Smartphone Based Real-Time Health Monitoring and Intervention

Part of the Scalable Computing and Communications book series (SCC)


Smartphones are often dubbed as “a doctor in your pocket” as they have in recent years become one of the most notable platforms for health management and monitoring. In this chapter we discuss the potentials for real-time health monitoring of chronic health conditions and data-driven intervention that aim to improve patient care at a lower cost. We outline several challenges that developers, patients, and providers face with respect to this new technology. We then review several commercial platforms for health monitoring and discuss their pros and cons. Furthermore, we present Berkeley Telemonitoring Framework, a recently developed Andorid-based open source solution for development of health-monitoring applications with security and privacy in mind. In particular, our framework offers an easy-to-use API for building client apps, deploying data-hosting servers, fault-tolerant data retrieval and storage, access to event-based Bluetooth and BLE stacks with standards for personal health devices, access to phone sensors, implementation of several vital signs estimators, gait analysis, etc. We demonstrate the use of the framework on an example fitness application MarathonCoach. We further discuss several challenges facing real-time telemonitoring. In particular, we focus on privacy and propose a novel information-theoretic framework called Private Disclosure of Information (PDI). The PDI framework formalizes a scheme for encoding the collected health data in a manner that minimizes the ability of an adversary from gaining knowledge about the patient’s diagnosis (or other information private by implication) through statistical inference, while allowing the authorized provider to use this information with no loss in utility.



Many people have directly and indirectly helped in preparing the manuscript of this chapter, both their support and feedback are greatly appreciated. The authors would like to thank David M. Liebovitz, MD for his continued support in telemonitoring and mHealth research. The Berkeley Telemonitoring Project would not have been possible without the dedication of every member of its team—their contributions are greatly appreciated and valued. Many thanks go to Katherine Driggs-Campbell for the initial conversation that spurred the idea of Private Disclosure of Information (PDI). The authors are also greatly indebted to Yusuf Erol, Michael Carl Tschantz, Arash Nourian and John F. Canny for their fruitful discussions and feedback that significantly improved the quality of the work on PDI. This work was supported in part by TRUST, Team for Research in Ubiquitous Secure Technology, which receives funding support for the National Science Foundation (NSF award number CCF-0424422). The publication of this chapter was made possible by Grant Number HHS 90TR0003/01. Any opinions, findings, conclusions, views or recommendations expressed in this chapter are those of the authors and do not necessarily reflect the views of the National Science Foundation or the official views of the United States Department of Health and Human Services.


  1. 1.
    N. R. Adam and J. C. Worthmann. Security-control methods for statistical databases: A comparative study. ACM Computing Surveys (CSUR), 21(4):515–556, 1989.CrossRefGoogle Scholar
  2. 2.
    N. Alshurafa, J.-A. Eastwood, S. Nyamathi, J. J. Liu, W. Xu, H. Ghasemzadeh, M. Pourhomayoun, and M. Sarrafzadeh. Improving compliance in remote healthcare systems through smartphone battery optimization. Biomedical and Health Informatics, IEEE Journal of, 19(1):57–63, Jan 2015.Google Scholar
  3. 3.
    Apple Inc. ResearchKit programming guide - Creating surveys at
  4. 4.
    Apple Inc. Apple Advances Health Apps with CareKit at, 2016.
  5. 5.
    AppleInsider Staff. Over 10K participants sign up for Stanford medical trial after ResearchKit debut at, 2015.
  6. 6.
    D. Aranki and R. Bajcsy. Private disclosure of information in health tele-monitoring. arXiv preprint  arXiv:1504.07313, 2015.
  7. 7.
    D. Aranki and R. Bajcsy. Private disclosure of information matlab toolbox at, 2016.
  8. 8.
    D. Aranki, G. Kurillo, A. Mani, P. Azar, J. van Gaalen, Q. Peng, P. Nigam, M. P. Reddy, S. Sankavaram, Q. Wu, and R. Bajcsy. A telemonitoring framework for android devices. In 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pages 282–291. IEEE, 2016.Google Scholar
  9. 9.
    D. Aranki, G. Kurillo, P. Yan, D. M. Liebovitz, and R. Bajcsy. Continuous, real-time, tele-monitoring of patients with chronic heart-failure: lessons learned from a pilot study. In Proceedings of the 9th International Conference on Body Area Networks, pages 135–141. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2014.Google Scholar
  10. 10.
    D. Aranki, G. Kurillo, P. Yan, D. M. Liebovitz, and R. Bajcsy. Real-time tele-monitoring of patients with chronic heart-failure using a smartphone: Lessons learned. IEEE Transactions on Affective Computing, 2016.Google Scholar
  11. 11.
    C. Asuncion, U. Balakrishnan, H. Sarver, L. Serven, and E. Song. A telemonitoring solution to long-distance running coaching. Master’s thesis, EECS Department, University of California, Berkeley, May 2016.Google Scholar
  12. 12.
    F. Axisa, A. Dittmar, and G. Delhomme. Smart clothes for the monitoring in real time and conditions of physiological, emotional and sensorial reactions of human. In Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, volume 4, pages 3744–3747. IEEE, 2003.Google Scholar
  13. 13.
    P. Azar, A. Mani, Q. Peng, and J. van Gaalen. Expanded telehealth platform for android. Master’s thesis, EECS Department, University of California, Berkeley, May 2015.Google Scholar
  14. 14.
    D. Ben-Zeev, S. M. Schueller, M. Begale, J. Duffecy, J. M. Kane, and D. C. Mohr. Strategies for mHealth Research: Lessons from 3 Mobile Intervention Studies. Administration and Policy in Mental Health and Mental Health Services Research, 42:157–167, 2015.CrossRefGoogle Scholar
  15. 15.
    L. Bishop, B. J. Holmes, and C. M. Kelley. National consumer health privacy survey 2005. California HealthCare Foundation, Oakland, CA, 2005.Google Scholar
  16. 16.
    R. Bloss. Wearable sensors bring new benefits to continuous medical monitoring, real time physical activity assessment, baby monitoring and industrial applications. Sensor Review, 35(2):141–145, 2015.CrossRefGoogle Scholar
  17. 17.
    B. M. Bot, C. Suver, E. C. Neto, M. Kellen, A. Klein, C. Bare, M. Doerr, A. Pratap, J. Wilbanks, E. R. Dorsey, S. H. Friend, and A. D. Trister. The mPower study, Parkinson disease mobile data collected using ResearchKit. Scientific Data, 3:160011, 2016. doi: 10.1038/sdata.2016.11 CrossRefGoogle Scholar
  18. 18.
    M. N. K. Boulos, A. C. Brewer, C. Karimkhani, D. B. Buller, and R. P. Dellavalle. Mobile medical and health apps: state of the art, concerns, regulatory control and certification. Online Journal of Public Health Informatics, 5(3), 2014.Google Scholar
  19. 19.
    M. N. Burns, M. Begale, J. Duffecy, D. Gergle, C. J. Karr, E. Giangrande, and D. C. Mohr. Harnessing context sensing to develop a mobile intervention for depression. Journal of Medical Internet Research, 13(3):1–17, 2011.CrossRefGoogle Scholar
  20. 20.
    M. A. Case, H. A. Burwick, K. G. Volpp, and M. S. Patel. Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA, 313(6):625–626, 2015.CrossRefGoogle Scholar
  21. 21.
    Centers for Medicare & Medicaid Services. National health expenditures 2014 highlights at, 2014.
  22. 22.
    S. I. Chaudhry, J. A. Mattera, J. P. Curtis, J. A. Spertus, J. Herrin, Z. Lin, C. O. Phillips, B. V. Hodshon, L. S. Cooper, and H. M. Krumholz. Telemonitoring in patients with heart failure. New England Journal of Medicine, 363(24):2301–2309, 2010.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    K. Y. Chen and M. Sun. Improving energy expenditure estimation by using a triaxial accelerometer. Journal of Applied Physiology, 83(6):2112–2122, 1997.Google Scholar
  25. 25.
    M. Y. Chih, T. Patton, F. M. McTavish, A. J. Isham, C. L. Judkins-Fisher, A. K. Atwood, and D. H. Gustafson. Predictive modeling of addiction lapses in a mobile health application. Journal of Substance Abuse Treatment, 46(1):29–35, 2014.CrossRefGoogle Scholar
  26. 26.
    R. A. Clark, S. C. Inglis, F. A. McAlister, J. G. Cleland, and S. Stewart. Telemonitoring or structured telephone support programmes for patients with chronic heart failure: systematic review and meta-analysis. BMJ, 334(7600):942, 2007.CrossRefGoogle Scholar
  27. 27.
    G. Cormode. Personal privacy vs population privacy: Learning to attack anonymization. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1253–1261. ACM, 2011.Google Scholar
  28. 28.
    T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2 edition, 2006.Google Scholar
  29. 29.
    R. B. D’Agostino, R. S. Vasan, M. J. Pencina, P. A. Wolf, M. Cobain, J. M. Massaro, and W. B. Kannel. General cardiovascular risk profile for use in primary care the framingham heart study. Circulation, 117(6):743–753, 2008.CrossRefGoogle Scholar
  30. 30.
    K. L. Dannecker, S. A. Petro, E. L. Melanson, and R. C. Browning. Accuracy of fitbit activity monitor to predict energy expenditure with and without classification of activities. Medicine & Science in Sports & Exercise, 43(5):62, 2011.CrossRefGoogle Scholar
  31. 31.
    D. E. Denning and J. Schlorer. Inference controls for statistical databases. Computer, 16(7):69–82, 1983.CrossRefGoogle Scholar
  32. 32.
    N. V. Dhurandhar, D. A. Schoeller, A. W. Brown, S. B. Heymsfield, D. M. Thomas, T. I. Sørensen, J. R. Speakman, M. M. Jeansonne, and D. B. Allison. Energy balance measurement: when something is not better than nothing. International Journal of Obesity, 2014.Google Scholar
  33. 33.
    D. Donaire-Gonzalez, A. de Nazelle, E. Seto, M. Mendez, M. J. Nieuwenhuijsen, and M. Jerrett. Comparison of physical activity measures using mobile phone-based calfit and actigraph. Journal of Medical Internet Research, 15(6), 2013.Google Scholar
  34. 34.
    G. Duncan and D. Lambert. The risk of disclosure for microdata. Journal of Business & Economic Statistics, 7(2):207–217, 1989.Google Scholar
  35. 35.
    G. T. Duncan and D. Lambert. Disclosure-limited data dissemination. Journal of the American Statistical Association, 81(393):10–18, 1986.CrossRefGoogle Scholar
  36. 36.
    C. Dwork. Differential privacy. In Automata, Languages and Programming, pages 1–12. Springer, 2006.Google Scholar
  37. 37.
    C. Dwork. Differential privacy: A survey of results. In Theory and Applications of Models of Computation, pages 1–19. Springer, 2008.Google Scholar
  38. 38.
    EMB/11073. ISO/IEEE health informatics – personal health device communication part 00103: Overview. ISO/IEEE Std 11073-00103:2012, 2012.Google Scholar
  39. 39.
    D. S. Eng and J. M. Lee. The promise and peril of mobile health applications for diabetes and endocrinology. Pediatric diabetes, 14(4):231–238, 2013.CrossRefGoogle Scholar
  40. 40.
    C. Farkas and S. Jajodia. The inference problem: A survey. SIGKDD Explor. Newsl., 4(2):6–11, Dec. 2002.Google Scholar
  41. 41.
    B. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys (CSUR), 42(4):14, 2010.CrossRefGoogle Scholar
  42. 42.
    A. D. Galbreath, R. A. Krasuski, B. Smith, K. C. Stajduhar, M. D. Kwan, R. Ellis, and G. L. Freeman. Long-term healthcare and cost outcomes of disease management in a large, randomized, community-based population with heart failure. Circulation, 110(23):3518–3526, 2004.CrossRefGoogle Scholar
  43. 43.
    G. Giamouzis, A. Kalogeropoulos, V. V. Georgiopoulou, S. Laskar, A. L. Smith, S. B. Dunbar, F. Triposkiadis, and J. Butler. Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions. Journal of Cardiac Failure, 17(1):54–75, 2011.CrossRefGoogle Scholar
  44. 44.
    G. Giamouzis, D. Mastrogiannis, K. Koutrakis, G. Karayannis, C. Parisis, C. Rountas, E. Adreanides, G. E. Dafoulas, P. C. Stafylas, J. Skoularigis, S. Giacomelli, Z. Olivari, and F. Triposkiadis. Telemonitoring in chronic heart failure: a systematic review. Cardiology Research and Practice, 2012, 2012.Google Scholar
  45. 45.
    A. Gkoulalas-Divanis, G. Loukides, and J. Sun. Publishing data from electronic health records while preserving privacy: A survey of algorithms. Journal of Biomedical Informatics, 50:4–19, 2014.CrossRefGoogle Scholar
  46. 46.
    C.-J. Hsiao and E. Hing. Use and characteristics of electronic health record systems among office-based physician practices, United States, 2001-2012. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, 2012.Google Scholar
  47. 47.
    D. L. Hunter. An Apple a day keeps the research ethics committee away? Research Ethics, 11(1):2–3, 2015.CrossRefGoogle Scholar
  48. 48.
    M. Hussain, A. Al-Haiqi, A. Zaidan, B. Zaidan, M. Kiah, N. B. Anuar, and M. Abdulnabi. The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Computer Methods and Programs in Biomedicine, 122(3):393–408, 2015.CrossRefGoogle Scholar
  49. 49.
    S. Inglis. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Journal of Evidence-Based Medicine, 3(4):228–228, 2010.CrossRefGoogle Scholar
  50. 50.
    J. Jardine, J. Fisher, and B. Carrick. Apple’s ResearchKit: smart data collection for the smartphone era? Journal of the Royal Society of Medicine, 108(8):294–296, 2015.CrossRefGoogle Scholar
  51. 51.
    S. F. Jencks, M. V. Williams, and E. A. Coleman. Rehospitalizations among patients in the medicare fee-for-service program. New England Journal of Medicine, 360(14):1418–1428, 2009.CrossRefGoogle Scholar
  52. 52.
    J. Jiao, T. Courtade, K. Venkat, and T. Weissman. Justification of logarithmic loss via the benefit of side information. In Information Theory (ISIT), 2014 IEEE International Symposium on, pages 946–950. IEEE, 2014.Google Scholar
  53. 53.
    R. Klaassen, R. op den Akker, and H. op den Akker. Feedback presentation for mobile personalised digital physical activity coaching platforms. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’13, pages 64:1–64:8, New York, NY, USA, 2013. ACM.Google Scholar
  54. 54.
    Y.-D. Lee and W.-Y. Chung. Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sensors and Actuators B: Chemical, 140(2):390–395, 2009.CrossRefGoogle Scholar
  55. 55.
    N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-diversity. In IEEE International Conference on Data Engineering, volume 7, pages 106–115, 2007.Google Scholar
  56. 56.
    A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1), Mar. 2007.Google Scholar
  57. 57.
    C. K. Martin, A. C. Miller, D. M. Thomas, C. M. Champagne, H. Han, and T. Church. Efficacy of SmartLoss (SM), a smartphone-based weight loss intervention: Results from a randomized controlled trial. Obesity, 23(5):935–42, 2015.CrossRefGoogle Scholar
  58. 58.
    B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar. I know why you went to the clinic: Risks and realization of https traffic analysis. In Privacy Enhancing Technologies: 14th International Symposium, PETS 2014, Amsterdam, The Netherlands, July 16-18, 2014. Proceedings, pages 143–163. Springer International Publishing, 2014.Google Scholar
  59. 59.
    M. Mladenov and M. Mock. A step counter service for java-enabled devices using a built-in accelerometer. In Proceedings of the 1st International Workshop on Context-Aware Middleware and Services: Affiliated With the 4th International Conference on Communication System Software and Middleware (COMSWARE 2009), pages 1–5. ACM, 2009.Google Scholar
  60. 60.
    B. Obama. United States health care reform: Progress to date and next steps. JAMA, 316(5):525–532, 2016.CrossRefGoogle Scholar
  61. 61.
    A. Pande, Y. Zeng, A. K. Das, P. Mohapatra, S. Miyamoto, E. Seto, E. K. Henricson, and J. J. Han. Energy expenditure estimation with smartphone body sensors. In Proc. of the 8th International Conference on Body Area Networks, pages 8–14, 2013.Google Scholar
  62. 62.
    G. Paré, K. Moqadem, G. Pineau, and C. St-Hilaire. Clinical effects of home telemonitoring in the context of diabetes, asthma, heart failure and hypertension: a systematic review. Journal of Medical Internet Research, 12(2), 2010.Google Scholar
  63. 63.
    J.-g. Park, A. Patel, D. Curtis, S. Teller, and J. Ledlie. Online pose classification and walking speed estimation using handheld devices. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 113–122. ACM, 2012.Google Scholar
  64. 64.
    M. S. Patel, D. A. Asch, and K. G. Volpp. Wearable devices as facilitators, not drivers, of health behavior change. JAMA, 313(5):459–460, 2015.CrossRefGoogle Scholar
  65. 65.
    Patient Protection and Affordable Care Act. Patient Protection and Affordable Care Act. Public Law, (111–148), 2010.Google Scholar
  66. 66.
    M.-Z. Poh, D. J. McDuff, and R. W. Picard. Advancements in noncontact, multiparameter physiological measurements using a webcam. Biomedical Engineering, IEEE Transactions on, 58(1):7–11, 2011.CrossRefGoogle Scholar
  67. 67.
    N. M. Rickles, B. L. Svarstad, J. L. Statz-Paynter, L. V. Taylor, and K. A. Kobak. Pharmacist telemonitoring of antidepressant use: effects on pharmacist–patient collaboration. Journal of the American Pharmacists Association, 45(3):344–353, 2005.CrossRefGoogle Scholar
  68. 68.
    S. Ritter. Apple’s Research Kit Development Framework for Iphone Apps Enables Innovative Approaches to Medical Research Data Collection. Clinical Trials, 5(2):1000e120, 2015.Google Scholar
  69. 69.
    R. S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, Nov 1993.Google Scholar
  70. 70.
    B. Spring, M. Gotsis, A. Paiva, and D. Spruijt-Metz. Healthy apps: Mobile devices for continuous monitoring and intervention. IEEE Pulse, 4(6):34–40, 2013.CrossRefGoogle Scholar
  71. 71.
    L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    A. G. Taylor. The ResearchKit Health Projects. In Get Fit with Apple Watch, chapter 8, pages 111–117. Apress, 2015.Google Scholar
  73. 73.
    D. E. R. Warburton, C. W. Nicol, and S. S. D. Bredin. Health benefits of physical activity: the evidence. CMAJ: Canadian Medical Association Journal = Journal de l’Association medicale canadienne, 174(6):801–9, 2006.Google Scholar
  74. 74.
    S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.CrossRefzbMATHGoogle Scholar
  75. 75.
    A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose. Phonotactic reconstruction of encrypted voip conversations: Hookt on fon-iks. In Security and Privacy (SP), 2011 IEEE Symposium on, pages 3–18. IEEE, 2011.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations