Skip to main content

3-Dimensional Device Fabrication: A Bio-Based Materials Approach

  • Chapter
  • First Online:
3D Printing and Bio-Based Materials in Global Health

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

In the previous chapter, we defined the evolution and advancement of 3-dimensional printing technologies and the transformation of these devices from rather primitive machines to highly adaptable modular apparatuses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTM International. (2014). ASTM D638-14 standard test method for tensile properties of plastics. Retrieved from https://doi.org/10.1520/D0638-14

  • ASTM International. (2015). ASTM D695-15 standard test method for compressive properties of rigid plastics. Retrieved from https://doi.org/10.1520/D0695-15

  • Azimi, P., Zhao, D., Pouzet, C., Crain, N. E., & Stephens, B. (2016). Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environmental Science and Technology, 50(3), 1260–1268.

    Article  Google Scholar 

  • Bandyopadhyay, A., Bose, S., & Das, S. (2015). 3D printing of biomaterials. MRS Bulletin, 40(02), 108–115.

    Article  Google Scholar 

  • Cherykhunthod, W., Seadan, M., & Suttiruengwong, S. (2015). Effect of peroxide and chain extender on mechanical properties and morphology of poly (butylene succinate)/poly (lactic acid) blends. In IOP Conference Series: Materials Science and Engineering (Vol. 87, No. 1, p. 012073). UK: IOP Publishing.

    Google Scholar 

  • Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of biological engineering, 9(1), 1.

    Article  Google Scholar 

  • Corneillie, S., & Smet, M. (2015). PLA architectures: the role of branching. Polymer Chemistry, 6(6), 850–867.

    Article  Google Scholar 

  • Davachi, S. M., & Kaffashi, B. (2015). Polylactic acid in medicine. Polymer-Plastics Technology and Engineering, 54(9), 944–967.

    Article  Google Scholar 

  • DeWolfe, A. (2010). How to perform an ASTM D790 plastic flexural 3 point bend test. Retrieved February 13, 2017, from http://www.admet.com/how-to-perform-an-astm-d790-plastic-flexural-3-point-bend-test/

  • Drummer, D., Cifuentes-Cuéllar, S., & Rietzel, D. (2012). Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping Journal, 18(6), 500–507.

    Article  Google Scholar 

  • Hamad, K., Kaseem, M., Yang, H. W., Deri, F., & Ko, Y. G. (2015). Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5), 435–455.

    Article  Google Scholar 

  • Hodsden, S. (2015, October 14). Abbott’s Fully Resorbable Heart Stent Performs Well In Trials. Retrieved January 10, 2017, from http://www.meddeviceonline.com/doc/abbott-s-fully-resorbable-heart-stent-performs-well-in-trials-0001

  • Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270–280.

    Article  Google Scholar 

  • Kondor, S., Grant, C. G., Liacouras, P., Schmid, M. J. R., Parsons, L. M., Rastogi, V K., … & Macedonia, C. (2013). On demand additive manufacturing of a basic surgical kit. Journal of Medical Devices, 7(3), 030916.

    Google Scholar 

  • Kreiger, M., & Pearce, J. M. (2013). Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustainable Chemistry & Engineering, 1(12), 1511–1519.

    Article  Google Scholar 

  • Langer, B., & Grellmann, W. (2014). Izod impact strength-introduction. In Polymer solids and polymer melts–mechanical and thermomechanical properties of polymers (pp. 251–251). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Lithner, D., Nordensvan, I., & Dave, G. (2012). Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile–butadiene–styrene, and epoxy to Daphnia magna. Environmental Science and Pollution Research, 19(5), 1763–1772.

    Article  Google Scholar 

  • Li, J., He, Y., & Inoue, Y. (2003). Thermal and mechanical properties of biodegradable blends of poly (L-lactic acid) and lignin. Polymer International, 52(6), 949–955.

    Google Scholar 

  • Mathew, A. P., & Oksman, K. (2004). Mechancial Properties of Biodegradable Composites from Poly Lactic Acid (PLA and Microcrystalline Cellulose (MCC). Wiley Interscience, 2014–2025.

    Google Scholar 

  • Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014–2025.

    Article  Google Scholar 

  • Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379–13398.

    Article  Google Scholar 

  • Modjarrad, K., & Ebnesajjad, S. (Eds.). (2013). Handbook of Polymer Applications in Medicine and Medical Devices. Amterdam: Elsevier.

    Google Scholar 

  • Mohanty, A. K., Wibowo, A., Misra, M., & Drzal, L. T. (2003). Development of renewable resource–based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics. Polymer Engineering & Science, 43(5), 1151–1161.

    Article  Google Scholar 

  • Neches, R. Y., Flynn, K. J., Zaman, L., Tung, E., & Pudlo, N. (2014). On the intrinsic sterility of 3D printing (No. e542v1). PeerJ PrePrints.

    Google Scholar 

  • Okubo, K., Fujii, T., & Thostenson, E. T. (2009). Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Composites Part A: Applied Science and Manufacturing; 40, 469–475.

    Google Scholar 

  • Oyama, H. T. (2009). Super-tough poly (lactic acid) materials: Reactive blending with ethylene copolymer. Polymer, 50(3), 747–751.

    Article  Google Scholar 

  • Pawar, R., U Tekale, S., U Shisodia, S., T Totre, J., & J Domb, A. (2014). Biomedical applications of poly (lactic acid). Recent Patents on Regenerative Medicine, 4(1), 40–51.

    Google Scholar 

  • Pilla, S. (Ed.). (2011). Handbook of bioplastics and biocomposites engineering applications (Vol. 81). John Wiley & Sons, New Jersey.

    Google Scholar 

  • Ramot, Y., Zada, M. H., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced drug delivery reviews.

    Google Scholar 

  • Rankin, T. M., Giovinco, N. A., Cucher, D. J., Watts, G., Hurwitz, B., & Armstrong, D. G. (2014). Three-dimensional printing surgical instruments: are we there yet? Journal of Surgical Research, 189(2), 193–197.

    Article  Google Scholar 

  • Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2014). Poly (lactic acid) stereocomplex formation: Application to PLA rheological property modification. Journal of Applied Polymer Science, 131(22).

    Google Scholar 

  • Shi, X., Zhang, G., Phuong, T. V., & Lazzeri, A. (2015). Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly (lactic acid). Molecules, 20(1), 1579–1593.

    Article  Google Scholar 

  • Shih, Y. F., & Huang, C. C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335–2340.

    Article  Google Scholar 

  • Stephens, B., Azimi, P., El Orch, Z., & Ramos, T. (2013). Ultrafine particle emissions from desktop 3D printers. Atmospheric Environment, 79, 334–339.

    Article  Google Scholar 

  • Storz, H., & Vorlop, K. D. (2013). Bio-based plastics: status, challenges and trends. Applied Agriculture Forestry Research, 63, 321–332.

    Google Scholar 

  • Ströck, M. (2006). Allotropes of Carbon [Digital image]. Retrieved from https://commons.wikimedia.org/wiki/File%3AEight_Allotropes_of_Carbon.png

  • Sudesh, K., & Iwata, T. (2008). Sustainability of bio-based and biodegradable plastics. CLEAN–Soil, Air, Water, 36(5–6), 433–442.

    Article  Google Scholar 

  • Tabi, T., Sajó, I. E., Szabó, F., Luyt, A. S., & Kovács, J. G. (2010). Crystalline structure of annealed polylactic acid and its relation to processing. Express Polymer Letters, 4(10), 659–668.

    Article  Google Scholar 

  • Thielen, M. (2012). Bioplastics: basics, applications, markets. Mönchengladbach: Polymedia Publisher.

    Google Scholar 

  • Tissue Repair. (2016). Retrieved January 10, 2017, from http://www.birmingham.ac.uk/research/activity/chemical-engineering/bioengineering/tissue-repair.aspx

  • Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T., & Fujiura, T. (2008). How to improve mechanical properties of polylactic acid with bamboo fibers. Journal of Materials Science, 43(2), 775–787.

    Google Scholar 

  • Van Wijk, A. J. M., & Van Wijk, I. (2015). 3D printing with biomaterials: Towards a sustainable and circular economy. IOS press, Amsterdam.

    Google Scholar 

  • Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly (lactic acid)-based biomaterials: synthesis, modification and applications (pp. 247–282). Rijeka: INTECH Open Access Publisher.

    Google Scholar 

  • Zeng, J. B., Li, K. A., & Du, A. K. (2015). Compatibilization strategies in poly (lactic acid)-based blends. Rsc Advances, 5(41), 32546–32565.

    Article  Google Scholar 

  • Zhai, W., Ko, Y., Zhu, W., Wong, A., & Park, C. B. (2009). A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. International Journal of Molecular Sciences, 10(12), 5381–5397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata K. Bhatia .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Bhatia, S.K., Ramadurai, K.W. (2017). 3-Dimensional Device Fabrication: A Bio-Based Materials Approach. In: 3D Printing and Bio-Based Materials in Global Health. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-58277-1_3

Download citation

Publish with us

Policies and ethics