Abstract

Image segmentation is an initial, yet crucial procedure in a number of medical imaging systems. Despite the existence of numerous generic solutions that address this problem, there is still a need for developing fast and accurate techniques specialized at extracting particular organs from the CT scans. In this paper, we present an approach based on simple operations, which is controlled with a few easy-to-adjust parameters and works without any user interaction. The proposed approach, despite its simplicity, was shown to be reliable and efficient for a dataset of over 50 studies, containing both healthy and pathologic lungs.

Keywords

Lung segmentation Computed tomography Medical image processing 

Notes

Acknowledgments

This research was supported by the National Centre for Research and Development under the Innomed Research and Development Grant No. POIR.01.02.00-00-0030/15.

References

  1. 1.
    Annangi, P., Thiruvenkadam, S., et al.: A region based active contour method for X-Ray lung segmentation using prior shape and low level features. In: Biomedical Imaging From Nano to Macro. IEEE (2010)Google Scholar
  2. 2.
    Costa, A., Carvalho, B.: SALSA–A simple automatic lung segmentation algorithm. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 501–508 (2015)Google Scholar
  3. 3.
    Cyganek, B., Graña, M., Porwik, P., Wozniak, M.: Intelligent methods applied to health-care information systems. Appl. Artif. Intell. 30(6), 495–496 (2016)CrossRefGoogle Scholar
  4. 4.
    Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Theory Comput. 8, 415–428 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    van Ginneken, B., et al.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: Proceedings of IEEE ISBI, pp. 286–289 (2015)Google Scholar
  6. 6.
    Hu, S., Hoffmann, E.: Automatic lung segmentation for accurate quantitation of volumetric X-Ray CT images. IEEE Trans. Med. Imaging 20(6), 490–498 (2001)CrossRefGoogle Scholar
  7. 7.
    Kawulok, M., Kawulok, J., Nalepa, J., Smolka, B.: Self-adaptive algorithm for segmenting skin regions. EURASIP J. Adv. Sig. Proc. 2014, 170 (2014)CrossRefGoogle Scholar
  8. 8.
    Mansoor, A., et al.: A generic approach to pathological lung segmentation. IEEE Trans. Med. Imaging 33(12), 2293–2310 (2014)CrossRefGoogle Scholar
  9. 9.
    Mostafa, A., Elfattah, M.A., Fouad, A., Hassanien, A.E., Hefny, H.: Enhanced region growing segmentation for CT liver images. Adv. Intell. Syst. Comput. 407, 115–127 (2015)CrossRefGoogle Scholar
  10. 10.
    Nalepa, J., Kawulok, M.: Fast and accurate hand shape classification. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 364–373. Springer, Cham (2014). doi:10.1007/978-3-319-06932-6_35 CrossRefGoogle Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. SMC–9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Perez, M.G., et al.: A multi-level thresholding method based on histogram derivatives for accurate brain MRI segmentation. Rev. Politcnica 35, 82 (2015)Google Scholar
  13. 13.
    Schlegl, T., Ofner, J., Langs, G.: Unsupervised pre-training across image domains improves lung tissue classification. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Zhang, S., Cai, W.T., Metaxas, D. (eds.) MCV 2014. LNCS, vol. 8848, pp. 82–93. Springer, Cham (2014). doi:10.1007/978-3-319-13972-2_8 Google Scholar
  14. 14.
    Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_46 CrossRefGoogle Scholar
  15. 15.
    Shin, H.C., Roth, H., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016)CrossRefGoogle Scholar
  16. 16.
    Siminski, K.: Clustering with missing values. Fundam. Inform. 123(3), 331–350 (2013)MATHGoogle Scholar
  17. 17.
    Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014)CrossRefGoogle Scholar
  18. 18.
    Sternberg, S.: Biomedical image processing. IEEE Comput. 16(1), 22–34 (1983)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Chan, K.L.: Active contour with a tangential component. J. Math. Imaging Vis. 51(2), 229–247 (2014)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Wang, Q., et al.: HOSVD-based 3D active appearance model: segmentation of lung fields in CT images. J. Med. Syst. 40(176), 1–11 (2016)Google Scholar
  21. 21.
    Zghidi, H., Walczak, M., et al.: Image processing and analysis of textile fibers by virtual random walk. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, vol. 5, pp. 717–720 (2013)Google Scholar
  22. 22.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Future ProcessingGliwicePoland
  2. 2.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations