Skip to main content

Pancreatic Cancer Epidemiology and Environmental Risk Factors

  • Chapter
  • First Online:
Current and Emerging Therapies in Pancreatic Cancer

Abstract

Pancreatic cancer is one of the leading causes of cancer death worldwide. It is currently the fourth leading cause of cancer-related deaths in both men and women in the United States and has a less than 10% 5-year survival rate for all stages combined.

Worldwide, pancreatic cancer is the eighth leading cause of cancer death in men and the ninth leading cause of cancer death in women. Over 85% of exocrine pancreatic cancers are adenocarcinomas with other variants making up the rest. Risk factors are mainly idiopathic but with some familial cases. Some of the nonfamilial risk factors include smoking, alcohol, diabetes, impaired glucose metabolism and obesity. Analysis from the SEER database in the United States reveals African Americans having the highest incidence of pancreatic cancer and American Indian/Alaska natives appear to be at lowest risk.

This chapter reviews inherited risk factors, genetic predisposition syndromes, environmental factors and other risk factors for pancreatic cancer including association with medications as well as screening and suggested surveillance in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Boyle P, et al. Epidemiology of pancreas cancer (1988). Int J Pancreatol. 1989;5(4):327–46.

    Article  CAS  PubMed  Google Scholar 

  3. Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford). 2008;10(1):58–62.

    Article  CAS  Google Scholar 

  4. Horner MJ, et al. SEER cancer statistics review, 1975–2006. Bethesda: National Cancer Institute; 2009.

    Google Scholar 

  5. Pernick NL, et al. Clinicopathologic analysis of pancreatic adenocarcinoma in African Americans and Caucasians. Pancreas. 2003;26(1):28–32.

    Article  PubMed  Google Scholar 

  6. Klein AP, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.

    Article  CAS  PubMed  Google Scholar 

  7. Brune KA, et al. Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst. 2010;102(2):119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tersmette AC, et al. Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res. 2001;7(3):738–44.

    CAS  PubMed  Google Scholar 

  9. Grant RC, et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015;148(3):556–64.

    Article  CAS  PubMed  Google Scholar 

  10. Eberle MA, et al. A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am J Hum Genet. 2002;70(4):1044–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jang JH, et al. Genetic variants in carcinogen-metabolizing enzymes, cigarette smoking and pancreatic cancer risk. Carcinogenesis. 2012;33(4):818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch HT, et al. Familial pancreatic cancer: clinicopathologic study of 18 nuclear families. Am J Gastroenterol. 1990;85(1):54–60.

    CAS  PubMed  Google Scholar 

  13. Rebours V, et al. Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroenterol. 2008;103(1):111–9.

    Article  PubMed  Google Scholar 

  14. Thompson D, Easton DF. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94(18):1358–65.

    Article  CAS  PubMed  Google Scholar 

  15. Axilbund JE, et al. Absence of germline BRCA1 mutations in familial pancreatic cancer patients. Cancer Biol Ther. 2009;8(2):131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iqbal J, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2012;107(12):2005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Asperen CJ, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005;42(9):711–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferrone CR, et al. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol. 2009;27(3):433–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Slater EP, et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet. 2010;78(5):490–4.

    Article  CAS  PubMed  Google Scholar 

  20. Bergman W, et al. Systemic cancer and the FAMMM syndrome. Br J Cancer. 1990;61(6):932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giardiello FM, et al. Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med. 1987;316(24):1511–4.

    Article  CAS  PubMed  Google Scholar 

  22. Su GH, et al. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol. 1999;154(6):1835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Lier MG, et al. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105(6):1258–64. author reply 1265

    Article  PubMed  Google Scholar 

  24. Swift M, Chase CL, Morrell D. Cancer predisposition of ataxia-telangiectasia heterozygotes. Cancer Genet Cytogenet. 1990;46(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts NJ, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  26. Win AK, et al. Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol. 2012;30(9):958–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kastrinos F, et al. Risk of pancreatic cancer in families with Lynch syndrome. JAMA. 2009;302(16):1790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goggins M, et al. Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+. Am J Pathol. 1998;152(6):1501–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lowenfels AB, et al. Pancreatitis and the risk of pancreatic cancer. N Engl J Med. 1993;328(20):1433–7.

    Article  CAS  PubMed  Google Scholar 

  30. Raimondi S, et al. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol. 2010;24(3):349–58.

    Article  PubMed  Google Scholar 

  31. Bansal P, Sonnenberg A. Pancreatitis is a risk factor for pancreatic cancer. Gastroenterology. 1995;109(1):247–51.

    Article  CAS  PubMed  Google Scholar 

  32. Bracci PM, et al. Pancreatitis and pancreatic cancer in two large pooled case-control studies. Cancer Causes Control. 2009;20(9):1723–31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maisonneuve P, Marshall BC, Lowenfels AB. Risk of pancreatic cancer in patients with cystic fibrosis. Gut. 2007;56(9):1327–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheldon CD, et al. A cohort study of cystic fibrosis and malignancy. Br J Cancer. 1993;68(5):1025–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neglia JP, Wielinski CL, Warwick WJ. Cancer risk among patients with cystic fibrosis. J Pediatr. 1991;119(5):764–6.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta S, et al. New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol. 2006;4(11):1366–72. quiz 1301

    Article  PubMed  Google Scholar 

  37. Aggarwal G, Kamada P, Chari ST. Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas. 2013;42(2):198–201.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sella T, et al. Gestational diabetes and risk of incident primary cancer: a large historical cohort study in Israel. Cancer Causes Control. 2011;22(11):1513–20.

    Article  PubMed  Google Scholar 

  39. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA. 1995;273(20):1605–9.

    Article  CAS  PubMed  Google Scholar 

  40. Gapstur SM, et al. Abnormal glucose metabolism and pancreatic cancer mortality. JAMA. 2000;283(19):2552–8.

    Article  CAS  PubMed  Google Scholar 

  41. Levine W, et al. Post-load plasma glucose and cancer mortality in middle-aged men and women. 12-year follow-up findings of the Chicago Heart Association Detection Project in Industry. Am J Epidemiol. 1990;131(2):254–62.

    Article  CAS  PubMed  Google Scholar 

  42. Smith GD, et al. Post-challenge glucose concentration, impaired glucose tolerance, diabetes, and cancer mortality in men. Am J Epidemiol. 1992;136(9):1110–4.

    Article  CAS  PubMed  Google Scholar 

  43. Borch K, et al. Increased incidence of pancreatic neoplasia in pernicious anemia. World J Surg. 1988;12(6):866–70.

    Article  CAS  PubMed  Google Scholar 

  44. Karlson BM, et al. Cancer of the upper gastrointestinal tract among patients with pernicious anemia: a case-cohort study. Scand J Gastroenterol. 2000;35(8):847–51.

    Article  CAS  PubMed  Google Scholar 

  45. Wolpin BM, et al. Pancreatic cancer risk and ABO blood group alleles: results from the pancreatic cancer cohort consortium. Cancer Res. 2010;70(3):1015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parkin DM, Muir CS. Cancer incidence in five continents. Comparability and quality of data. IARC Sci Publ. 1992;120:45–173.

    Google Scholar 

  47. Mulder I, et al. Smoking cessation would substantially reduce the future incidence of pancreatic cancer in the European Union. Eur J Gastroenterol Hepatol. 2002;14(12):1343–53.

    Article  PubMed  Google Scholar 

  48. Bosetti C, et al. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol. 2012;23(7):1880–8.

    Article  CAS  PubMed  Google Scholar 

  49. Vrieling A, et al. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2010;126(10):2394–403.

    CAS  PubMed  Google Scholar 

  50. Heinen MM, et al. Active and passive smoking and the risk of pancreatic cancer in the Netherlands Cohort Study. Cancer Epidemiol Biomark Prev. 2010;19(6):1612–22.

    Article  CAS  Google Scholar 

  51. Adair T, et al. Tobacco consumption and pancreatic cancer mortality: what can we conclude from historical data in Australia? Eur J Pub Health. 2012;22(2):243–7.

    Article  Google Scholar 

  52. Bertuccio P, et al. Cigar and pipe smoking, smokeless tobacco use and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol. 2011;22(6):1420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sponsiello-Wang Z, Weitkunat R, Lee PN. Systematic review of the relation between smokeless tobacco and cancer of the pancreas in Europe and North America. BMC Cancer. 2008;8:356.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luo J, et al. Oral use of Swedish moist snuff (snus) and risk for cancer of the mouth, lung, and pancreas in male construction workers: a retrospective cohort study. Lancet. 2007;369(9578):2015–20.

    Article  PubMed  Google Scholar 

  55. Lynch SM, et al. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol. 2009;170(4):403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rulyak SJ, et al. Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology. 2003;124(5):1292–9.

    Article  PubMed  Google Scholar 

  57. Lowenfels AB, et al. Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA. 2001;286(2):169–70.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta S, et al. Risk of pancreatic cancer by alcohol dose, duration, and pattern of consumption, including binge drinking: a population-based study. Cancer Causes Control. 2010;21(7):1047–59.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Carriere C, et al. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun. 2009;382(3):561–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gapstur SM, et al. Association of alcohol intake with pancreatic cancer mortality in never smokers. Arch Intern Med. 2011;171(5):444–51.

    Article  PubMed  Google Scholar 

  61. Lucenteforte E, et al. Alcohol consumption and pancreatic cancer: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol. 2012;23(2):374–82.

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y-T, et al. Association between alcohol intake and the risk of pancreatic cancer: a dose–response meta-analysis of cohort studies. BMC Cancer. 2016;16:212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Anderson MA, et al. Alcohol and tobacco lower the age of presentation in sporadic pancreatic cancer in a dose-dependent manner: a multicenter study. Am J Gastroenterol. 2012;107(11):1730–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ojajarvi IA, et al. Occupational exposures and pancreatic cancer: a meta-analysis. Occup Environ Med. 2000;57(5):316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ojajarvi A, et al. Risk of pancreatic cancer in workers exposed to chlorinated hydrocarbon solvents and related compounds: a meta-analysis. Am J Epidemiol. 2001;153(9):841–50.

    Article  CAS  PubMed  Google Scholar 

  66. Garabrant DH, et al. DDT and related compounds and risk of pancreatic cancer. J Natl Cancer Inst. 1992;84(10):764–71.

    Article  CAS  PubMed  Google Scholar 

  67. Andreotti G, et al. Agricultural pesticide use and pancreatic cancer risk in the Agricultural Health Study Cohort. Int J Cancer. 2009;124(10):2495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ji BT, et al. Occupational exposure to pesticides and pancreatic cancer. Am J Ind Med. 2001;39(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  69. Koren G, Matsui D, Bailey B. DEET-based insect repellents: safety implications for children and pregnant and lactating women. Can Med Assoc J. 2003;169(3):209–12.

    Google Scholar 

  70. Jiao L, et al. A combined healthy lifestyle score and risk of pancreatic cancer in a large cohort study. Arch Intern Med. 2009;169(8):764–70.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stolzenberg-Solomon RZ, et al. Meat and meat-mutagen intake and pancreatic cancer risk in the NIH-AARP cohort. Cancer Epidemiol Biomark Prev. 2007;16(12):2664–75.

    Article  CAS  Google Scholar 

  72. Vrieling A, et al. Fruit and vegetable consumption and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2009;124(8):1926–34.

    Article  CAS  PubMed  Google Scholar 

  73. Jiao L, et al. Glycemic index, carbohydrates, glycemic load, and the risk of pancreatic cancer in a prospective cohort study. Cancer Epidemiol Biomark Prev. 2009;18(4):1144–51.

    Article  CAS  Google Scholar 

  74. Dawson DW, et al. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev Res (Phila). 2013;6(10):1064–73.

    Article  CAS  Google Scholar 

  75. Nöthlings U, et al. Meat and fat intake as risk factors for pancreatic cancer: the multiethnic cohort study. J Natl Cancer Inst. 2005;97(19):1458–65.

    Article  PubMed  Google Scholar 

  76. MacMahon B, et al. Coffee and cancer of the pancreas. N Engl J Med. 1981;304(11):630–3.

    Article  CAS  PubMed  Google Scholar 

  77. Dong J, Zou J, Yu X-F. Coffee drinking and pancreatic cancer risk: a meta-analysis of cohort studies. World J Gastroenterol. 2011;17(9):1204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Amaya K, et al. Angiotensin II activates MAP kinase and NF-kappaB through angiotensin II type I receptor in human pancreatic cancer cells. Int J Oncol. 2004;25(4):849–56.

    CAS  PubMed  Google Scholar 

  79. Fujimoto Y, et al. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett. 2001;495(3):197–200.

    Article  CAS  PubMed  Google Scholar 

  80. Chiang Y-Y, et al. Lowered cancer risk with ACE inhibitors/ARBs: a population-based cohort study. J Clin Hypertens. 2014;16(1):27–33.

    Article  CAS  Google Scholar 

  81. Khurana V, Sheth A, Caldito G, Barkin JS. Angiotensin converting enzyme inhibitors reduce the incidence of pancreatic cancer: a study of half a million US veterans. Gastroenterology 2006;130(4), Suppl. 2, M 2163 A-425–426.

    Google Scholar 

  82. Sipahi I, et al. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol. 2010;11(7):627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakai Y, et al. Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer. 2010;103(11):1644–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Elashoff M, et al. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Azoulay L, et al. Incretin based drugs and the risk of pancreatic cancer: international multicentre cohort study. BMJ. 2016;352:i581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Scirica BM, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.

    Article  CAS  PubMed  Google Scholar 

  87. White WB, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.

    Article  CAS  PubMed  Google Scholar 

  88. Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and pancreatitis risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  89. Egan AG, et al. Pancreatic safety of incretin-based drugs--FDA and EMA assessment. N Engl J Med. 2014;370(9):794–7.

    Article  CAS  PubMed  Google Scholar 

  90. Onitilo AA, et al. Diabetes and cancer II: role of diabetes medications and influence of shared risk factors. Cancer Causes Control. 2012;23(7):991–1008.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cui X, et al. Statin use and risk of pancreatic cancer: a meta-analysis. Cancer Causes Control. 2012;23(7):1099–111.

    Article  PubMed  Google Scholar 

  92. Fukui M, et al. EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ROS accumulation, caspase-8 activation, and autophagy induction. J Cell Biochem. 2013;114(1):192–203.

    Article  CAS  PubMed  Google Scholar 

  93. Amin S, Boffetta P, Lucas AL. The role of common pharmaceutical agents on the prevention and treatment of pancreatic cancer. Gut Liver. 2016;10(5):665–71.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ulrich CM, Bigler J, Potter JD. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer. 2006;6(2):130–40.

    Article  CAS  PubMed  Google Scholar 

  95. Yue W, et al. Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev Res (Phila). 2014;7(4):388–97.

    Article  CAS  Google Scholar 

  96. Bonifazi M, et al. Aspirin use and pancreatic cancer risk. Eur J Cancer Prev. 2010;19(5):352–4.

    Article  CAS  PubMed  Google Scholar 

  97. Tan XL, et al. Aspirin, nonsteroidal anti-inflammatory drugs, acetaminophen, and pancreatic cancer risk: a clinic-based case-control study. Cancer Prev Res (Phila). 2011;4(11):1835–41.

    Article  CAS  Google Scholar 

  98. Capurso G, et al. Meta-analysis: the use of non-steroidal anti-inflammatory drugs and pancreatic cancer risk for different exposure categories. Aliment Pharmacol Ther. 2007;26(8):1089–99.

    Article  CAS  PubMed  Google Scholar 

  99. Larsson SC, et al. Aspirin and nonsteroidal anti-inflammatory drug use and risk of pancreatic cancer: a meta-analysis. Cancer Epidemiol Biomark Prev. 2006;15(12):2561–4.

    Article  CAS  Google Scholar 

  100. Cui XJ, et al. High-dose aspirin consumption contributes to decreased risk for pancreatic cancer in a systematic review and meta-analysis. Pancreas. 2014;43(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  101. Bradley MC, et al. Non-steroidal anti-inflammatory drugs and pancreatic cancer risk: a nested case–control study. Br J Cancer. 2010;102(9):1415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rothwell PM, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41.

    Article  CAS  PubMed  Google Scholar 

  103. Jacobs EJ, et al. Daily aspirin use and cancer mortality in a large US cohort. J Natl Cancer Inst. 2012;104(16):1208–17.

    Article  CAS  PubMed  Google Scholar 

  104. Kim MS, et al. Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K. Cancer Prev Res (Phila). 2014;7(2):236–45.

    Article  CAS  Google Scholar 

  105. Han X, et al. Antioxidant intake and pancreatic cancer risk: the Vitamins and Lifestyle (VITAL) Study. Cancer. 2013;119(7):1314–20.

    Article  CAS  PubMed  Google Scholar 

  106. Kawa S, et al. Vitamin D analogues up-regulate p21 and p27 during growth inhibition of pancreatic cancer cell lines. Br J Cancer. 1997;76(7):884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zugmaier G, et al. Growth-inhibitory effects of vitamin D analogues and retinoids on human pancreatic cancer cells. Br J Cancer. 1996;73(11):1341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Skinner HG, et al. Vitamin D intake and the risk for pancreatic cancer in two cohort studies. Cancer Epidemiol Biomark Prev. 2006;15(9):1688–95.

    Article  CAS  Google Scholar 

  109. de Gonzalez AB, Sweetland S, Spencer E. A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer. 2003;89(3):519–23.

    Article  PubMed Central  Google Scholar 

  110. Larsson SC, Orsini N, Wolk A. Body mass index and pancreatic cancer risk: a meta-analysis of prospective studies. Int J Cancer. 2007;120(9):1993–8.

    Article  CAS  PubMed  Google Scholar 

  111. Renehan AG, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.

    Article  PubMed  Google Scholar 

  112. Trikudanathan G, et al. Association between Helicobacter pylori infection and pancreatic cancer. A cumulative meta-analysis. JOP. 2011;12(1):26–31.

    PubMed  Google Scholar 

  113. Hassan MM, et al. Association between hepatitis B virus and pancreatic cancer. J Clin Oncol. 2008;26(28):4557–62.

    Article  PubMed  PubMed Central  Google Scholar 

  114. El-Serag HB, et al. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: a population-based study of U.S. veterans. Hepatology. 2009;49(1):116–23.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rulyak SJ, et al. Cost-effectiveness of pancreatic cancer screening in familial pancreatic cancer kindreds. Gastrointest Endosc. 2003;57(1):23–9.

    Article  PubMed  Google Scholar 

  116. Canto MI, et al. Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol. 2004;2(7):606–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olugbenga O. Olowokure M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Yellu, M., Kamireddy, C., Olowokure, O.O. (2018). Pancreatic Cancer Epidemiology and Environmental Risk Factors. In: Bekaii-Saab, T., El-Rayes, B. (eds) Current and Emerging Therapies in Pancreatic Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-58256-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58256-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58255-9

  • Online ISBN: 978-3-319-58256-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics