Skip to main content

Structures and Functions of Peptidylarginine Deiminases

  • Chapter
  • First Online:
Book cover Protein Deimination in Human Health and Disease

Abstract

Molecular structures of peptidylarginine deiminase (PAD) isozymes are strongly associated with their functions. This chapter summarizes the X-ray structures of PAD1, PAD2, and PAD4 as well as that of the PAD from the periodontal pathogen Porphyromonas gingivalis. It is interesting to understand structural differences among these isozymes in detail and to discuss their association with the function of each isozyme. These structures also provide critical insights that will aid in the development of isozyme-selective PAD inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, S. N., Farmer, E. A., Spargo, L., Logan, R., & Gully, N. (2013). Porphyromonas gingivalis peptidylarginine deiminase substrate specificity. Anaerobe, 23, 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Arita, K., et al. (2004). Structural basis for Ca2+-induced activation of human PAD4. Nature Structural & Molecular Biology, 11(8), 777–783.

    Google Scholar 

  • Arita, K., et al. (2006). Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5291–5296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baka, Z., et al. (2012). Citrullination under physiological and pathological conditions. Joint, Bone, Spine, 79(5), 431–436.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S. K., et al. (2006). Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Investigative Ophthalmology & Visual Science, 47(6), 2508–2514.

    Article  Google Scholar 

  • Bicker, K. L., & Thompson, P. R. (2013). The protein arginine deiminases: Structure, function, inhibition, and disease. Biopolymers, 99(2), 155–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, X., et al. (2009). Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer, 9, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavanas, S., et al. (2004). Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene, 330, 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Christophorou, M. A., et al. (2014). Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature, 507(7490), 104–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi, N., et al. (2014). Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity. The FASEB Journal, 28(7), 2840–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann, J., Clancy, K. W., & Thompson, P. R. (2015). Chemical biology of protein arginine modifications in epigenetic regulation. Chemical Reviews, 115(11), 5413–5461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulas, T., et al. (2015). Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Scientific Reports, 5, 11969.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrin, M., et al. (2003). cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type I. The Biochemical Journal, 370(Pt 1), 167–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyorgy, B., Toth, E., Tarcsa, E., Falus, A., & Buzas, E. I. (2006). Citrullination: A posttranslational modification in health and disease. The International Journal of Biochemistry & Cell Biology, 38(10), 1662–1677.

    Article  Google Scholar 

  • Humm, A., Fritsche, E., Steinbacher, S., & Huber, R. (1997). Crystal structure and mechanism of human L-arginine:Glycine amidinotransferase: A mitochondrial enzyme involved in creatine biosynthesis. The EMBO Journal, 16(12), 3373–3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida-Yamamoto, A., et al. (2000). Decreased deiminated keratin K1 in psoriatic hyperproliferative epidermis. The Journal of Investigative Dermatology, 114(4), 701–705.

    Article  CAS  PubMed  Google Scholar 

  • Ishigami, A., et al. (2002). Human peptidylarginine deiminase type II: Molecular cloning, gene organization, and expression in human skin. Archives of Biochemistry and Biophysics, 407(1), 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Jamali, H., Khan, H. A., Stringer, J. R., Chowdhury, S., & Ellman, J. A. (2015). Identification of multiple structurally distinct, nonpeptidic small molecule inhibitors of protein arginine deiminase 3 using a substrate-based fragment method. Journal of the American Chemical Society, 137(10), 3616–3621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, B., et al. (2013). Peptidylarginine deiminase and protein citrullination in prion diseases: Strong evidence of neurodegeneration. Prion, 7(1), 42–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J. E., Causey, C. P., Knuckley, B., Slack-Noyes, J. L., & Thompson, P. R. (2009). Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Current Opinion in Drug Discovery & Development, 12(5), 616–627.

    CAS  Google Scholar 

  • Jones, J. E., et al. (2012). Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chemical Biology, 7(1), 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Kanno, T., et al. (2000). Human peptidylarginine deiminase type III: Molecular cloning and nucleotide sequence of the cDNA, properties of the recombinant enzyme, and immunohistochemical localization in human skin. The Journal of Investigative Dermatology, 115(5), 813–823.

    Article  CAS  PubMed  Google Scholar 

  • Kearney, P. L., et al. (2005). Kinetic characterization of protein arginine deiminase 4: A transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry, 44(31), 10570–10582.

    Article  CAS  PubMed  Google Scholar 

  • Kizawa, K., et al. (2008). Specific citrullination causes assembly of a globular S100A3 homotetramer: A putative Ca2+ modulator matures human hair cuticle. The Journal of Biological Chemistry, 283(8), 5004–5013.

    Article  CAS  PubMed  Google Scholar 

  • Kizawa, K., Unno, M., Heizmann, C. W., & Takahara, H. (2014). Chapter 8: Importance of citrullination of hair protein molecular assembly during trichocytic differentiation. In A. P. Nicholas & S. K. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 129–148). New York: Springer.

    Chapter  Google Scholar 

  • Knuckley, B., Bhatia, M., & Thompson, P. R. (2007). Protein arginine deiminase 4: Evidence for a reverse protonation mechanism. Biochemistry, 46(22), 6578–6587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knuckley, B., Luo, Y., & Thompson, P. R. (2008). Profiling protein arginine deiminase 4 (PAD4): A novel screen to identify PAD4 inhibitors. Bioorganic & Medicinal Chemistry, 16(2), 739–745.

    Article  CAS  Google Scholar 

  • Knuckley, B., Causey, C. P., Pellechia, P. J., Cook, P. F., & Thompson, P. R. (2010a). Haloacetamidine-based inactivators of protein arginine deiminase 4 (PAD4): Evidence that general acid catalysis promotes efficient inactivation. Chembiochem, 11(2), 161–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knuckley, B., et al. (2010b). A fluopol-ABPP HTS assay to identify PAD inhibitors. Chemical Communications, 46(38), 7175–7177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, S., et al. (2011). Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Developmental Biology, 355(2), 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, H. D., et al. (2015). Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature Chemical Biology, 11(3), 189–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, P., et al. (2010). PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. The Journal of Experimental Medicine, 207(9), 1853–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. L., Chiang, Y. H., Liu, G. Y., & Hung, H. C. (2011). Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PloS One, 6(6), e21314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., et al. (2006). Inhibitors and inactivators of protein arginine deiminase 4: Functional and structural characterization. Biochemistry, 45(39), 11727–11736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGraw, W. T., Potempa, J., Farley, D., & Travis, J. (1999). Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infection and Immunity, 67(7), 3248–3256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohlake, P., & Whiteley, C. G. (2010). Arginine metabolising enzymes as therapeutic tools for Alzheimer’s disease: Peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides. Molecular Neurobiology, 41(2–3), 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery, A. B., et al. (2016). Crystal structure of Porphyromonas gingivalis peptidylarginine deiminase: Implications for autoimmunity in rheumatoid arthritis. Annals of the Rheumatic Diseases, 75(6), 1255–1261.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, K., et al. (1999). Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1alpha,25-dihydroxyvitamin D(3). The Journal of Biological Chemistry, 274(39), 27786–27792.

    Article  CAS  PubMed  Google Scholar 

  • Nijenhuis, S., Zendman, A. J., Vossenaar, E. R., Pruijn, G. J., & vanVenrooij, W. J. (2004). Autoantibodies to citrullinated proteins in rheumatoid arthritis: Clinical performance and biochemical aspects of an RA-specific marker. Clinica Chimica Acta, 350(1–2), 17–34.

    Article  CAS  Google Scholar 

  • Saijo, S., et al. (2016). Monomeric form of peptidylarginine deiminase type I revealed by X-ray crystallography and small-angle X-ray scattering. Journal of Molecular Biology, 428(15), 3058–3073.

    Article  CAS  PubMed  Google Scholar 

  • Slack, J. L., Causey, C. P., Luo, Y., & Thompson, P. R. (2011). Development and use of clickable activity based protein profiling agents for protein arginine deiminase 4. ACS Chemical Biology, 6(5), 466–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade, D. J., Subramanian, V., Fuhrmann, J., & Thompson, P. R. (2014a). Chemical and biological methods to detect post-translational modifications of arginine. Biopolymers, 101(2), 133–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade, D. J., Subramanian, V., & Thompson, P. R. (2014b). Pluripotency: Citrullination unravels stem cells. Nature Chemical Biology, 10(5), 327–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade, D. J., et al. (2015). Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design. ACS Chemical Biology, 10(4), 1043–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler, S. C., et al. (2013). Dysregulation of PAD4-mediated citrullination of nuclear GSK3beta activates TGF-beta signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 11851–11856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian, V., et al. (2015). Design, synthesis, and biological evaluation of tetrazole analogs of Cl-amidine as protein arginine deiminase inhibitors. Journal of Medicinal Chemistry, 58(3), 1337–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, A., et al. (2003). Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nature Genetics, 34(4), 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Taki, H., et al. (2011). Purification of enzymatically inactive peptidylarginine deiminase type 6 from mouse ovary that reveals hexameric structure different from other dimeric isoforms. Advances in Bioscience and Biotechnology, 2(4), 7.

    Article  Google Scholar 

  • Teo, C. Y., et al. (2012). Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening. BMC Bioinformatics, 13(Suppl 17), S4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unno, M., Kawasaki, T., Takahara, H., Heizmann, C. W., & Kizawa, K. (2011). Refined crystal structures of human Ca2+/Zn2+-binding S100A3 protein characterized by two disulfide bridges. Journal of Molecular Biology, 408(3), 477–490.

    Google Scholar 

  • Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J., & Pruijn, G. J. (2003). PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. BioEssays, 25(11), 1106–1118.

    Article  CAS  PubMed  Google Scholar 

  • Vossenaar, E. R., Zendman, A. J., & Van Venrooij, W. J. (2004). Citrullination, a possible functional link between susceptibility genes and rheumatoid arthritis. Arthritis Research & Therapy, 6(1), 1–5.

    Article  CAS  Google Scholar 

  • Wegner, N., et al. (2010). Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: Implications for autoimmunity in rheumatoid arthritis. Arthritis and Rheumatism, 62(9), 2662–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, D. D., Bilbao, J. M., O’Connors, P., & Moscarello, M. A. (1996). Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Annals of Neurology, 40(1), 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., et al. (2012). Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proceedings of the National Academy of Sciences of the United States of America, 109(33), 13331–13336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Unno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Unno, M., Kizawa, K., Takahara, H. (2017). Structures and Functions of Peptidylarginine Deiminases. In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_3

Download citation

Publish with us

Policies and ethics