Morphotectonics and Past Large Earthquakes in Eastern Belgium

  • Kris Vanneste
  • Thierry Camelbeeck
  • Koen Verbeeck
  • Alain Demoulin
Part of the World Geomorphological Landscapes book series (WGLC)


Tectonic landforms are generally modest in stable plate interiors characterized by low strain rates and rare earthquakes. Nevertheless, specific investigations identified such landforms in Belgium, which is located in the most seismically active region of stable Europe northwest of the Alps. Here, we present two active fault zones among the best documented in continental Europe, and whose geomorphology is related to earthquake activity in eastern Belgium. The 12-km-long Bree fault scarp is readily identified in the flat alluvial landscape of the Campine. It results from the activity since the Middle Pleistocene of the Geleen fault bounding the Roer Valley Graben (RVG) to the west. At its base, a ~1-m-high scarplet corresponds to the surface rupture associated with a Holocene large normal-faulting earthquake. Combined geomorphological and paleoseismic investigations allowed evaluating the average slip rate and the return period of large earthquakes on the Geleen fault during the Late Pleistocene. Extending across a more animated landscape in NE Ardenne, owing also to lower slip rates, the Hockai Fault Zone (HFZ) is morphologically less conspicuous. Microseismicity, geology and geomorphology provide consistent evidence of recent activity of this fault zone. The location of the M = 6 ¼ 18 September 1692 earthquake, the largest historical earthquake recorded in this part of Europe, on the northern HFZ suggests that the fault morphology could have resulted from sporadic bursts of large earthquakes.


Morphotectonics Roer Valley Graben Geleen fault Hockai Fault Zone Paleoseismology Historical seismicity Fault activity 


  1. Ahorner L (1966) Erdbeben und jüngste Tektonik im Braunkohlenrevier der Niederrheinischen Bucht. Zeitschrift der deutschen geologischen Gesellschaft 118:150–160Google Scholar
  2. Ahorner L (1975) Present-day stress field and seismotectonic block movements along major fault zones in Central Europe. Tectonophysics 29:233–249CrossRefGoogle Scholar
  3. Ahorner L (1983) Historical seismicity and present-day microearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds) Plateau Uplift. Springer, Heidelberg, pp 198–221CrossRefGoogle Scholar
  4. Alexandre P, Kupper JL (1997) Le tremblement de terre de 1692 et le miracle de Notre-Dame des Récollets à Verviers. Feuillets de la Cathédrale de Liège, 28–32, p 43Google Scholar
  5. Alexandre P, Kusman D, Camelbeeck T (2005) Le tremblement de terre du 18 septembre 1692 dans le nord de l’Ardenne (Belgique). Impact sur le patrimoine architectural. In: Levret A (ed) Actes des VIèmes Rencontres du Groupe APS “Archéosismicité et Vulnérabilité. Environnement, bâti ancien et société”, Perpignan, 4–5 Oct 2002, pp 1–10Google Scholar
  6. Alexandre P, Kusman D, Petermans T, Camelbeeck T (2008) The 18 September 1692 earthquake in the Belgian Ardenne and its aftershocks. In: Fréchet J, Meghraoui M, Stucchi M (eds) Historical seismology. Interdisciplinary studies of past and recent earthquakes. Springer, Berlin, pp 209–230Google Scholar
  7. Ancion C, Evrard P (1957) Contribution à l’étude des failles Monty, Mouhy et d’Ostende dans la partie occidentale du massif de Herve. Ann Soc géol Belg 80:B477–B488Google Scholar
  8. Beerten K (2015) Quaternary stratigraphy of the Belgian part of the Roer Valley Graben: lithology, petrology and depositional environments. In: Belqua 2015 annual meeting, Brussels, BelgiumGoogle Scholar
  9. Beerten K, Vandenberghe N, Gullentops F, Paulissen E (2005a) Technisch verslag bij de Quartairgeologische kaart van België. Vlaams Gewest, Kaartblad Rekem (26), p 52Google Scholar
  10. Beerten K, Vandenberghe N, Gullentops F, Paulissen E (2005b) Technisch verslag bij de Quartairgeologische kaart van België. Vlaams Gewest, Kaartblad Maaseik (10–18), p 48Google Scholar
  11. Beerten K, Brabers P, Bosch P, Gullentops F (1999) The passage of the Feldbiss Bundle through the Maas Valley. Aardkundige Meded 9:153–158Google Scholar
  12. Beerten K, De Craen M, Wouters L (2013) Patterns and estimates of post-Rupelian burial and erosion in the Campine area, north-eastern Belgium. Phys Chem Earth 64:12–20CrossRefGoogle Scholar
  13. Bovy B, Braun J, Demoulin A (2016a) A new numerical framework for simulating the control of weather and climate on the evolution of soil-mantled hillslopes. Geomorphology 263:99–112Google Scholar
  14. Bovy B, Braun J, Demoulin A (2016b) Soil production and hillslope transport in mid-latitudes during the last glacial-interglacial cycle: a combined data and modelling approach in northern Ardennes. Earth Surf Proc Landf (in press)Google Scholar
  15. Camelbeeck T (1993) Mécanisme au foyer des tremblements de terre et contraintes tectoniques: le cas de la zone intraplaque belge. Unpublished PhD thesis, Université catholique de Louvain, p 343Google Scholar
  16. Camelbeeck T, Meghraoui M (1996) Large earthquakes in northern Europe more likely than once thought. EOS Trans, Am Geophys Union 77:405–409CrossRefGoogle Scholar
  17. Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large palaeoearthquakes with surface faulting in the Roer graben (northwestern Europe). Geophys J Int 132:347–362CrossRefGoogle Scholar
  18. Camelbeeck T, Van Eck T (1994) The Roer Valley Graben of 13 April 1992 and its seismotectonic setting. Terra Nova 6:291–300CrossRefGoogle Scholar
  19. Camelbeeck T, Alexandre P, Vanneste K, Meghraoui M (2000) Long-term seismicity in regions of present day low seismic activity: the example of western Europe. Soil Dyn Earthq Eng 20:405–414CrossRefGoogle Scholar
  20. Camelbeeck T, Martin H, Vanneste K, Verbeeck K, Meghraoui M (2001) Morphometric analysis of normal faulting in slow-deformation areas: examples in the Lower Rhine Embayment. Neth J Geosci 80(3–4):95–107Google Scholar
  21. Camelbeeck T, Vanneste K, Alexandre P, Verbeeck K, Petermans T, Rosset P, Everaerts M, Warnant R, Van Camp M (2007) Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In: Stein S, Mazzotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. Geological Society of America Special Paper 425, pp 193–224Google Scholar
  22. Camelbeeck T, Alexandre P, Sabbe A, Knuts E, Garcia Moreno D, Lecocq T (2014) The impact of the earthquake activity in Western Europe from the historical and architectural heritage records. In: Talwani P (ed) Intraplate earthquakes. Cambridge University Press, pp 198–230Google Scholar
  23. Cloetingh S, Cornu T, Ziegler P, Beekman F, Environmental Tectonics (ENTEC) Working Group (2006) Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth-Science Reviews 74:127–196Google Scholar
  24. De Mulder E, Geluk M, Ritsema I, Westerhoff W, Wong T (2003) De Ondergrond van Nederland. Wolters-Noordhoff, GroningenGoogle Scholar
  25. Demoulin A (1986) Un phénomène de capture dans les Hautes Fagnes: la Hoëgne à Hockai. Bull Soc belge d’Etudes géographiques 1986–1:45–51Google Scholar
  26. Demoulin A (1988) Cenozoic tectonics of the Hautes Fagnes plateau (Belgium). Tectonophysics 145:31–41Google Scholar
  27. Demoulin A (2006) La néotectonique de l’Ardenne-Eifel et des regions avoisinantes. Mémoires de la Classe des Sciences, Académie Royale de Belgique, 25, p 252Google Scholar
  28. Demoulin A, Pissart A (1999) Les glissements de terrain du Pays de Herve. Convention 99/42075 du Ministère de la Région Wallonne (DGATLP), unpublished report, p 146Google Scholar
  29. Demoulin A, Pissart A, Schroeder C (2003) On the origin of late quaternary palaeolandslides in the Liège (E Belgium) area. Int J Earth Sci 92:795–805CrossRefGoogle Scholar
  30. Demoulin A, Bovy B, Rixhon G, Cornet Y (2007) An automated method to extract fluvial terraces from digital elevation models: The Vesdre valley, a case study in eastern Belgium. Geomorphology 91:51–64CrossRefGoogle Scholar
  31. Demyttenaere R, Laga P (1988) Breuken-en isohypsenkaarten van het Belgisch gedeelte van de Roerdal Slenk: eerste resultaten van een seismisch onderzoek in het gebied van Poppel-Lommel-Maaseik. Professional papers. Geological Survey of Belgium, 234, p 20Google Scholar
  32. Dèzes P, Schmid S, Ziegler P (2004) Evolution of the European cenozoic rift system: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33. doi: 10.1016/j.tecto.2004.06.011 CrossRefGoogle Scholar
  33. Dvorak J (1973) Die Quergliederung des Rheinischen Schiefergebirges und die Tektogenese des Siegener Antiklinorium. Neues Jb Geol Paläontol Abh 143:132–152Google Scholar
  34. Felder W, Bosch P, Bisschops J (1989) Geologische kaart van Zuid-Limburg en omgeving, schaal 1:50000. Afzettingen van de Maas, Rijks Geologische DienstGoogle Scholar
  35. Frechen M, Vanneste K, Verbeeck K, Paulissen E, Camelbeeck T (2001) The deposition history of the coversands along the Bree Fault Escarpment, NE Belgium. Geol Mijnbouw 80:171–185Google Scholar
  36. Geluk M, Duin E, Dusar M, Rijkers M, van den Berg M, van Rooijen P (1994) Stratigraphy and tectonics of the Roer Valley Graben. Geol Mijnbouw 73:129–141Google Scholar
  37. Graulich J (1959) Sur le prolongement méridional du graben de La Minerie (Pays de Herve). Ann Soc Géol Belg 83:55–61Google Scholar
  38. Grünthal G, Wahlström R, Stromeyer D (2009) The unified catalogue of earthquakes in central, northern and northwestern Europe (CENEC)—updated and expanded to the last millennium. J Seismolog 13:517–541. doi: 10.1007/s10950-008-9144-9 CrossRefGoogle Scholar
  39. Gullentops F, Bogemans F, De Moor G, Paulissen E, Pissart A (2001) Quaternary lithostratigraphic units (Belgium). Geol Belg 4:153–164Google Scholar
  40. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2010) Global crustal stress pattern based on the world stress map database release 2008. Tectonophysics 482:3–15. doi: 10.1016/j.tecto.2009.1007.1023 CrossRefGoogle Scholar
  41. Houtgast R, Van Balen R, Brouwer L, Brand G, Brijker J (2002) Late quaternary activity of the Feldbiss Fault Zone, Roer Valley Rift System, the Netherlands, based on displaced fluvial terrace fragments. Tectonophysics 352:295–315CrossRefGoogle Scholar
  42. Houtgast R, Van Balen R, Kasse C, Vandenberghe J (2003) Late quaternary tectonic evolution and postseismic near-surface fault displacements along the Geleen Fault (Feldbiss Fault Zone—Roer Valley Rift System, the Netherlands), based on trenching. Geol Mijnbouw 82:177–196CrossRefGoogle Scholar
  43. Houtgast R, Van Balen R, Kasse C (2005) Late quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading. Quatern Sci Rev 24:489–508CrossRefGoogle Scholar
  44. Kemna H (2008) Pliocene and lower pleistocene fluvial history of the Lower Rhine Embayment, Germany: examples of the tectonic forcing of river courses. Quatern Int 189:106–114CrossRefGoogle Scholar
  45. Knuts E, Camelbeeck T, Alexandre P (2015) The 3 December 1828 moderate earthquake at the border between Belgium and Germany. J Seismolog. doi: 10.1007/s10950-015-9535-7 Google Scholar
  46. Kolstrup E (1980) Climate and stratigraphy in northwestern Europe between 30,000 and 13,000 b.p., with special reference to the Netherlands. Mededelingen Rijks Geologische Dienst 32(15):181–253Google Scholar
  47. Laloux M, Dejonghe L, Geukens F, Ghysel P, Hance L (1996) Limbourg-Eupen 43/5-6. Carte géologique de Wallonie, échelle: 1/25.000. Notice explicative. Ministère de la Région Wallonne, DGRNE, p 192Google Scholar
  48. Lecocq T (2011) Seismic Activity in the Ardenne and its relationship with Active Tectonics. Unpublished PhD thesis, Université libre de Bruxelles Google Scholar
  49. McCalpin J (1996) Paleoseismology. Int Geophys Ser 62:588 (Academic Press, San Diego)Google Scholar
  50. Meghraoui M, Camelbeeck T, Vanneste K, Brondeel M, Jongmans D (2000) Active faulting and paleoseismology along the Bree Fault Zone, Lower Rhine Graben (Belgium). J Geophys Res 105B:13809–13841CrossRefGoogle Scholar
  51. Mreyen A, Havenith H, Fernandez-Steeger T (2016) Geophysical investigation of landslides and fault scarps in the Hockai Fault Zone, Belgium. Geophys Res Abstr 18:2350Google Scholar
  52. Nguyen F, Teerlynck H, Van Rompaey G, Van Camp M, Jongmans D, Camelbeeck T (2004) Use of microtremor measurements for assessing site effects in Northern Belgium—interpretation of the observed intensity during the M s = 5.0 June 11, 1938 earthquake. J Seismolog 8:41–56CrossRefGoogle Scholar
  53. Pantosti D, Schwartz D, Valensise G (1993) Paleoseismology along the 1980 surface rupture of the Irpinia fault: implications for earthquake recurrence in the southern Apennines, Italy. J Geophys Res 98B:6561–6577CrossRefGoogle Scholar
  54. Paulissen E (1973) De morfologie en de kwartairstratigrafie van de maasvallei in belgisch Limburg. Verhandelingen van de Koninklijke Academie voor Wetenschappen, Letteren en Schone Kunsten van België, Klasse der WetenschappenGoogle Scholar
  55. Paulissen E, Vandenberghe J, Gullentops F (1985) The Feldbiss fault in the Maas valley bottom (Limburg, Belgium). Geol Mijnbouw 64:79–87Google Scholar
  56. Petermans T, Camelbeeck T, Alexandre P, Kusman D, Verbeeck K, Vanneste K, Demoulin A, Nguyen F, Jongmans D (2004) The September 18, 1692 earthquake in the Belgian Ardenne and its geologic context. Final Report, SAFE European Project (EVG1-2000-00023), WP2, p 43Google Scholar
  57. SPW (2014) Relief de la Wallonie—Modèle numérique de terrain (MNT) 2013–2014 (
  58. Stein S (2007) Approaches to continental intraplate issues. In: Stein S, Mazzotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. Geol Soc Am Spec Pap 425:1–16Google Scholar
  59. Thorez J, Dreesen R (1986) A model of a regressive depositional system around the Old Red Continent as exemplified by a field trip in the Upper Famennian “Psammites du Condroz” in Belgium. Ann Soc géol Belg 109:285–323Google Scholar
  60. Van den Berg M (1994) Neotectonics of the Roer Valley rift system: style and rate of crustal deformation inferred from syn-tectonic sedimentation. Geol Mijnbouw 73:143–156Google Scholar
  61. Vandenberghe D, Vanneste K, Verbeeck K, Paulissen E, Buylaert JP, De Corte F, Van den haute P (2009) Late Weichselian and Holocene earthquake events along the Geleen fault in NE Belgium: OSL age constraints. Quat Int 199:56–74Google Scholar
  62. Vanneste K, Camelbeeck T, Verbeeck K (2013) A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe. Bull Seismol Soc Am 103A:984–1007CrossRefGoogle Scholar
  63. Vanneste K, Mees F, Verbeeck K (2008b) Thin-section analysis as a tool to aid identification of palaeoearthquakes on the “slow”, active Geleen Fault, Roer Valley Graben. Tectonophysics 453:94–109CrossRefGoogle Scholar
  64. Vanneste K, Meghraoui M, Camelbeeck T (1999) Late quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss fault, Lower Rhine Graben system. Tectonophysics 309:57–79CrossRefGoogle Scholar
  65. Vanneste K, Verbeeck K, Camelbeeck T, Paulissen E, Meghraoui M, Renardy F, Jongmans D, Frechen M (2001) Surface-rupturing history of the Bree fault scarp, Roer Valley graben: evidence for six events since the late Pleistocene. J Seismolog 5:329–359CrossRefGoogle Scholar
  66. Vanneste K, Verbeeck K, Camelbeeck T (2002) Exploring the Belgian Maas valley between Neeroeteren and Bichterweert for evidence of active faulting. Aardkundige Meded 12:5–8Google Scholar
  67. Vanneste K, Verbeeck K, Petermans T (2008a) Pseudo-3D imaging of a low-slip-rate, active normal fault using shallow geophysical methods: the Geleen fault in the Belgian Maas River valley. Geophysics 73:B1–B9CrossRefGoogle Scholar
  68. Verbeek J, de Leeuw C, Parker N, Wong T (2002) Characterisation and correlation of tertiary seismostratigraphic units in the Roer Valley Graben. Geol Mijnbouw 81:159–166CrossRefGoogle Scholar
  69. Vogt J (1984) Révision de deux séismes majeurs de la région d’Aix-la-Chapelle-Verviers-Liège ressentis en France: 1504, 1692. In Tremblements de terre, histoire et archéologie. Actes du Colloque d’Antibes 2–4 Nov 1983, Valbonne, pp 13–21Google Scholar
  70. Worum G, Michon L, van Balen R, van Wees J-D, Cloetingh S, Pagnier H (2005) Pre-neogene controls on present-day fault activity in the West Netherlands Basin and Roer Valley Rift System (southern Netherlands): role of variations in fault orientation in a uniform low-stress regime. Quatern Sci Rev 24:475–490CrossRefGoogle Scholar
  71. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  72. Ziegler P (1990) Geological atlas of western and central Europe. Shell Internationale Petroleum Maatschappij B.VGoogle Scholar
  73. Ziegler P, Dèzes P (2006) Crustal evolution of western and central Europe. In: Gee D, Stephenson R (eds) European lithosphere dynamics, vol 32, pp 43–56 (Geol Soc Mem)Google Scholar
  74. Ziegler P, Dèzes P (2007) Cenozoic uplift of Variscan massifs in the Alpine foreland: timing and controlling mechanisms. Glob Planet Change 58:237–269CrossRefGoogle Scholar
  75. Ziegler P, Schumacher M, Dèzes P, Van Wees J, Cloetingh S (2006) Post-Variscan evolution of the lithosphere in the area of the European Cenozoic Rift System. In: Gee D, Stephenson R (eds) European lithosphere dynamics, vol 32, pp 97–112 (Geol Soc Mem)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kris Vanneste
    • 1
  • Thierry Camelbeeck
    • 1
  • Koen Verbeeck
    • 1
  • Alain Demoulin
    • 2
  1. 1.Section of Seismology—GravimetryRoyal Observatory of BelgiumBrusselsBelgium
  2. 2.Department of Physical Geography and QuaternaryUniversity of LiègeLiègeBelgium

Personalised recommendations