Advertisement

Using Improved Varieties of Pearl Millet in Rainfed Agriculture in Response to Climate Change: A Case Study in the Tillabéri Region in Niger

  • Abdourahamane Tankari Dan-badjo
  • Halima Oumarou Diadie
  • Sabrina Maria Rita BonettoEmail author
  • Carlo Semita
  • Elena Isotta Cristofori
  • Anna Facello
Chapter

Abstract

The seasonal effects of global warming and water shortages begin to be observed on agricultural production and forecast trends encourage studies on adaptation to climate change. In Niger, West Africa, farmers have always had to cope with irregularity and poor distribution of rainfall. In recent years, a variation in the frequency and duration of rainy season were observed, suddenly affecting a drop in agricultural productions with the resulting food crisis. Therefore, it is necessary to find measures to adapt to the climate variability. This study focus on the Tillabéri region (Niger) where pearl millet is one of the main agricultural product. In the last few years, variations in rainfall distribution and quantity have negatively influenced the yield of the millet crops. A climatic assessment of the region has been verified collecting information from both previous studies and satellite data. Two early improved varieties of pearl millet (SOSAT-C88 and HKP) drought resistant have been distributed to local farmers in 16 pilot areas of the Tillabéri region and the crop yields were compared to those of the local traditional variety cultivated in the same area. The results have identified a significant increase in production, up to 62%, with the improved varieties compared to the local one. These results suggests the possibility of a potential extension, in this region, of improved varieties to mitigate the effects derived by climate change in the agricultural productivity in order to avoid famine and guarantee food security.

Keywords

Pearl millet Early varieties Crop yelds Climate change Tillabéri Niger 

References

  1. Azuma H. (2009) Les céréales au Niger: accent sur le mil et le sorgho, Rapport d’études, 117p. Association pour la Collaboration Internationale en matière d’Agriculture et des Forêts du Japon (JAICAF) Ed. Sozosha, LTDGoogle Scholar
  2. FAO (2009) Food Security and Agricultural Mitigation in Developing Countries: Options for capturing synergies. 84 p. http://www.fao.org/docrep/012/i1318e/i1318e00.pdf (Last Accessed 18 Mai 2016)
  3. Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J. (2007) The TRMM Multi-satellite Precipitation Analysis (TMPA), In Satellite Rainfall Applications for Surface Hydrology, [Hossain F. and Gebremichael M., Eds.], Springer Verlag, chapter 1, pp. 3–22Google Scholar
  4. Huffman, G.J., R.F. Adler, D.T. Bolvin, E.J. Nelkin (2010) The TRMM Multi-satellite Precipitation Analysis (TMPA). Chapter 1 in Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds. Springer Verlag: 3–22, ISBN: 978-90-481-2914-0Google Scholar
  5. Lawan K G, Bacci M. and Mouhaimini M. (2014) Caracterisation Climatique De La Region De Tillabéri. Report N°1 Anadia Niger Project. 36 p. http://www.meteo-niger.org/data/files/ANADIA_RT1_Climat_300614.pdf (Last Accessed 18 Mai 2016)
  6. Mai O. A. (2010) Pratiques paysannes de gestion des mils précoces et tardifs et suivi de la floraison à Sina Kora (Zone de Kouré), mémoire de fin d’études ITA, Option Production Végétale, FA, UAM de Niamey, 46 p.Google Scholar
  7. République du Niger – Ministère de l’Agriculture (2012) Catalogue national des espèces et variétés végétales (CNEV), 276 p. http://www.fao.org/fileadmin/user_upload/spid/docs/Niger/CatalogueNationaldesEspecesetVarietesVegetales-Niger.pdf (Last Accessed 18 Mai 2016)
  8. Roberts, Maxwell; Russo, Riccardo (1999) Following up a one-factor between-subjects ANOVA”. A Student’s Guide to Analysis of Variance. Filey, United Kingdom: J&L Composition Ltd. pp. 82–109. ISBN 0-415-16564-4Google Scholar
  9. Scheel, M. L. M., Rohrer, M., Huggel, C., Santos Villar, D., Silvestre, E., Huffman, G. J. (2011) Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci., 15, pp. 2649–2663Google Scholar
  10. Shaban, A., Robinson, C., El-Baz, F. (2009) Using MODIS Images and TRMM Data to Correlate Rainfall Peaks and Water Discharges from the Lebanese Coastal Rivers. Journal of Water Resource and Protection, 1(4), pp. 227–236Google Scholar
  11. Tubiello F., Schmidhuber J., Howden M., Neofotis P. G., Park S., Fernandes E., Thapa D. (2008) Climate Change response strategies for agriculture: Challenges and opportunities for the 21st century. Agriculture and Rural Development Discussion Paper 42 The World Bank 75 p. http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2009/06/16/000333038_20090616005440/Rendered/PDF/489210NWP0dp4210Box338934B01PUBLIC1.pdf (Last Accessed 18 Mai 2016)
  12. Zar, Jerrold H. (1999) Biostatistical Analysis (4th ed.). Newburry Park, CA: Prentice Hall. pp. 208–230. ISBN 0-130-81542-XGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Abdourahamane Tankari Dan-badjo
    • 1
  • Halima Oumarou Diadie
    • 2
  • Sabrina Maria Rita Bonetto
    • 3
    Email author
  • Carlo Semita
    • 3
  • Elena Isotta Cristofori
    • 4
  • Anna Facello
    • 4
  1. 1.Soil Sciences Department, Faculty of AgronomyAbdou Moumouni UniversityNiameyNiger
  2. 2.Crop Production Department, Faculty of AgronomyAbdou Moumouni UniversityNiameyNiger
  3. 3.Earth Sciences DepartmentCISAO, University of TurinTurinItaly
  4. 4.TriM- Translate into MeaningTurinItaly

Personalised recommendations