Transferring Wireless High Update Rate Supermedia Streams Over IoT

  • George Kokkonis
  • Kostas E. Psannis
  • Manos Roumeliotis
  • Yutaka Ishibashi
  • Byung-Gyu Kim
  • Anthony G. Constantinides
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 715)

Abstract

This paper deals with the wireless transfer of real-time high update rate supermedia data over the Internet of Things. It presents the related work on supermedia data transferring and QoE requirements. It proposes a high-level architectural design for the transport of wireless multiple supermedia streams over IoT. The most known compression techniques and flow controls for wireless sensory data transferring are analyzed. Based on these compression techniques, a new network adaptive flow control algorithm is proposed. Measurements for multihop wireless transferring of high update rate supermedia packets over IoT are presented.

Keywords

IoT Wireless communications Supermedia Haptics Transport protocols Real-time protocols Flow control Congestion control 

References

  1. 1.
    INFSO D.4 Networked Enterprise & RFID INFSO G.2 Micro & Nanosystems, in Co-operation with the Working Group RFID of the ETP EPOSS, “Internet of Things in 2020, Roadmap for the Future”, Version 1.1, 27 May 2008Google Scholar
  2. 2.
    Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. McCann, K. Leung, A survey on the IETF protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wirel. Commun. 20(6), 91–98 (2013)Google Scholar
  3. 3.
    K. Iwata, Y. Ishibashi, N. Fukushima, S. Sugawara, Qoe assessment in haptic media, sound, and video transmission: effect of playout buffering control. Comput. Entertain. (CIE) 8(2), 12 (2010)Google Scholar
  4. 4.
    S. Allin, Y. Matsuoka, R. Klatzky, Measuring just noticeable differences for haptic force feedback: implications for rehabilitation, in Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE (2002), pp. 299–302Google Scholar
  5. 5.
    S. Dodeller, N.D. Georganas, Transport layer protocols for telehaptics update message, in Proceedings of the 22nd Biennial Symposium on Communications, Queen’s Univeristy, Canada, May 31–June 3 (2004)Google Scholar
  6. 6.
    Q. Zeng, Y. Ishibashi, N. Fukushima, S. Sugawara, K. Psannis, Influences of inter-stream synchronization errors among haptic media, sound, and video on quality of experience in networked ensemble, in Proceedings of the IEEE 2nd Global Conference on Consumer Electronics (GCCE), Oct 2013, pp. 466–470Google Scholar
  7. 7.
    S. Lee, J. Kim, Priority-based haptic event filtering for transmission and error control in networked virtual environments. Multimed. Syst. 15(6), 355–367 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. Ishibashi, Y. Hashimoto, T. Ikedo, S. Sugawara, Adaptive delta-causality control with adaptive dead-reckoning in networked games, in Proceedings of the 6th ACM SIGCOMM Workshop on Network and System Support for Games. ACM (2007), pp. 75–80Google Scholar
  9. 9.
    C.W. Borst, Predictive coding for efficient host-device communication in a pneumatic force-feedback display, in Proceedings of the Eurohaptics Conference, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE (2005), pp. 596–599Google Scholar
  10. 10.
    R. Wirz, R. Marn, M. Ferre, J. Barrio, J.M. Claver, J. Ortego, Bidirectional transport protocol for teleoperated robots. ÍEEE Trans. Ind. Electron. 56(9), 3772–3781 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Fujimoto, Y. Ishibashi, Packetization interval of haptic media in networked virtual environments, in Proceedings of the 4th ACM SIGCOMM Workshop on Network and System Support for Games. ACM (2005), pp. 1–6Google Scholar
  12. 12.
    C. Shahabi, A. Ortega, M.R. Kolahdouzan, A comparison of different haptic compression techniques, in Proceedings of the IEEE International Conference on Multimedia and Expo, ICME’02, vol. 1. IEEE (2002), pp. 657–660Google Scholar
  13. 13.
    A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes, D. Sadok, A survey on internet traffic identification, in Communications Surveys Tutorials, vol. 11, no. 3. IEEE (2009), pp. 37–52Google Scholar
  14. 14.
    A. Finamore, M. Mellia, M. Meo, M.M. Munafo, D. Rossi, Experiences of internet traffic monitoring with Tstat. IEEE Netw. 25(3), 8–14 (2011)Google Scholar
  15. 15.
    A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes, D. Sadok, A survey on internet traffic identification. IEEE Commun. Surv. Tutor. 11(3), 37–52, 3rd Quarter (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • George Kokkonis
    • 1
  • Kostas E. Psannis
    • 1
  • Manos Roumeliotis
    • 1
  • Yutaka Ishibashi
    • 2
  • Byung-Gyu Kim
    • 3
  • Anthony G. Constantinides
    • 4
  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece
  2. 2.Department of Computer Science, Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan
  3. 3.Department of IT EngineeringSookmyung Women’s University Seoul Republic of KoreaA-san CityKorea
  4. 4.Department of Electrical and Electronic EngineeringImperial College LondonLondonUK

Personalised recommendations