Skip to main content

Making Compatible Energy Planning with Urban Decision-Making: Socio-Energy Nodes and Local Configuration

  • Conference paper
  • First Online:
Eco-design in Electrical Engineering (ED2E 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 440))

Included in the following conference series:

Abstract

This communication will develop a specific concept, the socio-energy node (SEN), to help understand energy assemblages in urban spaces. The SEN concept broadens the scope of planning to urban-energy interaction, the better to understand two main points. First, it informs questions about how to upgrade large energy networks and hybridize them with self-sufficient energy loops. Second, it aims to provide support for energy planners when modelling multi-actor energy systems. We therefore emphasize the importance of qualifying relationships between energy and urban-planning stakeholders and propose a method for implementing—and reconsidering—energy planning in cities, by breaking energy systems down into SENs and by studying how they “plug” together and into local configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This article mobilizes results of the research project « Ecoquartier NEXUS Energie » (Eco-district NEXUS energy), co- funded by ADEME (French Environment and Energy Management Agency), and led by the laboratory PACTE-CNRS (coordination Gilles DEBIZET), the federative research structure INNOVACS, the laboratory EDDEN (UPMF), the INES (CEA) and Grenoble Ecole de Management: http://www.nexus-energy.fr/.

References

  1. Truffer B, Coenen L (2012) Environmental innovation and sustainability transitions in regional studies. Reg Stud 46(1):1–21

    Google Scholar 

  2. Soshinskaya M, Crijns-Graus WHJ, Guerrero JM, Vasquez JC (2014) Microgrids: Experiences, barriers and success factors. Renew Sustain Energy Rev 40:659–672

    Article  Google Scholar 

  3. Rutherford J, Coutard O (2014) Urban energy transitions: places, processes and politics of socio-technical change. Urban Stud 51(7):1353–1377

    Article  Google Scholar 

  4. Bulkeley H, Castán Broto V, Maassen A (2014) Low-carbon transitions and the reconfiguration of urban infrastructure. Urban Stud 51(7):1471–1486

    Article  Google Scholar 

  5. Coutard O, Rutherford J (2013) Vers L’essor de Villes «post-Réseaux»: Infrastructures, Innovation Sociotechnique et Transition Urbaine En Europe. In: Forest J and Hamdouch A (eds) L’innovation Face Aux Défis Environnementaux de La Ville Contemporaine, Presses Polytechniques Universitaires Romandes

    Google Scholar 

  6. Debizet G (2016) Scénarios de transition énergétique en ville. Acteurs Régulations Technologies. La Documentation Française, 200p. ISBN: 978-2-11-010025-2. http://www.ladocumentationfrancaise.fr/catalogue/9782110100252/index.shtml

  7. Debizet G, Tabourdeau A, Gauthier C, Menanteau P (2016) Spatial processes in urban energy transitions: considering an assemblage of Socio-Energetic Nodes. J Clean Prod 134:330–341

    Google Scholar 

  8. Geels FW, Schot J (2007) Typology of sociotechnical transition pathways. Res Policy 36(3):399–417

    Google Scholar 

  9. Kaika M, Swyngedouw E (2000) Fetishizing the modern city: the phantasmagoria of urban technological networks. Int J Urban Regional 24(1):120–138

    Google Scholar 

  10. Jaglin S (2014) Urban energy policies and the governance of multilevel issues in Cape Town. Urban Stud 51(7):1394–1414

    Google Scholar 

  11. Pasimeni MR, Petrosillo I, Aretano R, Semeraro T, De Marco A, Zaccarelli N, Zurlini G (2014) Scales, strategies and actions for effective energy planning: a review. Energy Policy 65:165–174

    Article  Google Scholar 

  12. Holmgren K (2006) Role of a district-heating network as a user of waste-heat supply from various sources: the case of Göteborg. Appl Energy 83

    Google Scholar 

  13. Rocher L (2013) Le chauffage urbain dans la transition énergétique: des reconfigurations entre flux et réseau. Métropolis—Flux 2(92)

    Google Scholar 

  14. Kelly S, Pollitt M (2010) An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom. Energ Policy 38(11):6936–6945

    Google Scholar 

  15. Lund H, Werner S, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, Mathiesen BV (2014) 4th Generation District Heating (4GDH). Energy 68:1–11

    Google Scholar 

  16. Lund H, Möller B, Mathiesen BV, Dyrelund A (2010) The role of district heating in future renewable energy systems. Energy 35(3):1381–1390

    Google Scholar 

  17. Gabillet P (2015) Energy supply and urban planning projects: analysing tensions around district heating provision in a French eco-district. Energ Policy 78:189–197

    Google Scholar 

  18. Nässén J, Holmberg J (2013) On the potential trade-offs between energy supply and end-use technologies for residential heating. Energ Policy 59:470–480

    Google Scholar 

  19. Harrestrup M, Svendsen S (2014) Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: a case study of the Copenhagen district heating area in Denmark. Energ Policy 68:294–305

    Google Scholar 

  20. Orecchini F, Santiangeli A (2011) Beyond smart grids: the need of intelligent energy networks for a higher global efficiency through energy vectors integration. Int J Hydrogen Energy 36

    Google Scholar 

  21. Crossley P, Beviz A (2010) Smart energy systems: transitioning renewables onto the grid. Renew Energ Focus 11(5):54–59

    Google Scholar 

  22. Mathiesen BV, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, Nielsen S, Ridjan I, Karnøe P, Sperling K, Hvelplund FK (2015) Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl Energ 145:139–154

    Google Scholar 

  23. Menon RP, Paolone M, Maréchal F (2013) Study of optimal design of polygeneration systems in optimal control strategies. Energy 55:134–141

    Google Scholar 

  24. Rivarolo M, Greco A, Massardo AF (2013) Thermo-economic optimization of the impact of renewable generators on poly-generation smart-grids including hot thermal storage. Energ Convers Manage 65:75–83

    Google Scholar 

  25. Kiss VM (2015) Modelling the energy system of Pécs—The first step towards a sustainable city. Energy 80(1):373–387

    Article  Google Scholar 

  26. Lund H, Andersen AN, Ostergaard PA, Vad Mathiesen B, Connolly D (2012) From electricity smart grids to smart energy systems: a market operation based approach and understanding. Energy 42

    Google Scholar 

  27. Bocken NMP, Short SW, Rana P, Evans S (2014) A literature and practice review to develop sustainable business model archetypes. J Clean Prod 65:42–56

    Google Scholar 

  28. Genus A, Coles A-M (2008) Rethinking the multi-level perspective of technological transitions. Res Policy 37 (9):1436-1445

    Google Scholar 

  29. Boons F, Lüdeke-Freund F (2013) Business models for sustainable innovation: state-of-the-art and steps towards a research agenda. J Clean Prod 45:9–19

    Google Scholar 

  30. Boutaud B (2009) Quartier durable ou éco-quartierc? Cybergeoc: Eur J Geogr. http://cybergeo.revues.org/22583

  31. Souami T (2011) Ecoquartiers secrets de fabrication. Analyse Critique d’exemples Européens. Les Carnets de l’Info. Collection «Modes de Villec»

    Google Scholar 

  32. Grudet I, (2015) Le “moment écoquartier” en France: expérimentations et labellisation. in Debizet and Godier Architecture et urbanisme durables: modèles et savoirs, Cahier RAMAU 7 Ed. La Villette. pp 22–37

    Google Scholar 

  33. Debizet G, Blanchard O (2015) Énergies en (éco)quartier. Innovatio 2. http://innovacs-innovatio.upmf-grenoble.fr/index.php?id=207. Publié en ligne le 02 février 2015

  34. Debizet G, Gauthier C, Labranche S, Menanteau P, Ambroise-Renault V, Blanchard O, Blanco S et al. (2014) Energy coordination in eco-districts: the multi-disciplinary NEXUS project. In: Proceedings of the 9th conference on sustainable development of energy, water and environment systems. Venice-Istambul, SDEWES2014.0295, pp 1–16. https://hal.archives-ouvertes.fr/hal-01133254

  35. Blanchard O, Debizet G (2015) Écoquartier, systèmes énergétiques et gouvernancec: une base de données bibliographique. Innovatio 2. http://innovacs-innovatio.upmf-grenoble.fr/index.php?id=127. Publié en ligne le 02 février 2015

  36. Schneuwly P, Debizet G (2015) Technologies de mobilisation des énergies renouvelables et de coordination énergétique dans les écoquartiers. Innovatio 2. http://innovacs-innovatio.upmf-grenoble.fr/index.php?id=141. Publié en ligne le 02 février 2015

  37. Menanteau P, Blanchard O (2014) Quels Systèmes Énergétiques Pour Les Éco-Quartiers? Une Première Comparaison France-Europe. Revue de l’Energie 622. ISBN: 9782710810414

    Google Scholar 

  38. Moss T, Guy S, Marvin S, Medd W (2011) Intermediaries and the reconfiguration of urban infrastructures: an introduction. In: Shaping urban infrastructures: intermediaries and the governance of socio-technical networks, Earthscan. Simon Guy, Simon Marvin, Will Medd and Thimoty Moss, London, Washington D.C. https://www.routledge.com/Shaping-Urban-Infrastructures-Intermediaries-and-the-Governance-of-Socio-Technical/Guy-Marvin-Medd-Moss/p/book/9781138996137

  39. Tabourdeau A (2014) Entre forêt et énergiec: composer la transition. Le cas du bois-énergie en Auvergne et Rhone-Alpes. Ph.D. Doctorate, Université Grenoble Alpes

    Google Scholar 

Download references

Acknowledgements

Authors thank Ademe (French Environment and Energy Management Agency) for funding the Ecoquartier Nexus Energy research project led by PACTE laboratory (CNRS, IEP, Université Grenoble Alpes) in partnership with EDDEN, Innovacs (University Grenoble Alpes), INES- CEA-Tech and Grenoble School of Management. See www.nexus-energy.fr

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Debizet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Debizet, G., Tabourdeau, A. (2018). Making Compatible Energy Planning with Urban Decision-Making: Socio-Energy Nodes and Local Configuration. In: Bessède, JL. (eds) Eco-design in Electrical Engineering. ED2E 2017. Lecture Notes in Electrical Engineering, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-58172-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58172-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58171-2

  • Online ISBN: 978-3-319-58172-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics