Skip to main content

Lactic Acid and Lactic Acid Bacteria: Current Use and Perspectives in the Food and Beverage Industry

  • Chapter
  • First Online:
  • 1477 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

Abstract

Lactic acid bacteria are widely spread throughout the environment, being symbiotic to humans and among the most important microorganisms used in food fermentations. Despite being a heterogeneous group, lactic acid bacteria share common fermentative pathways, which lead primarily to the production of lactic acid. Their presence in food may be both beneficial and harmful, as their metabolic pathways may also lead to spoilage of certain foods. Furthermore, these microorganisms have gained particular attention due to production of substances of protein structure characterised by an antimicrobial activity (i.e. bacteriocins). These substances are being currently studied for their high potential in the application in food industry for biopreservation, being ‘Generally Recognised As Safe’. Therefore, the role of lactic acid bacteria in the food industry is evolving and promising an always increasing number of applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

BA:

Biogenic amine

CO2 :

Carbon dioxide

H2O2 :

Hydrogen peroxide

LAB:

Lactic acid bacteria

References

  • Aasen IM, Markussen S, Møretrø T, Katla T, Axelsson L, Naterstad K (2003) Interactions of the bacteriocins sakacin P and nisin with food constituents. Int J Food Microbiol 87(1–2):35–43. doi:10.1016/S0168-1605(03)00047-3

    Article  CAS  Google Scholar 

  • Baglio E (2014) Chemistry and technology of yoghurt fermentation. Springer, SpringerBriefs in Chemistry of Foods

    Book  Google Scholar 

  • Bhatti M, Veeramachaneni A, Shelef LA (2004) Factors affecting the antilisterial effects of nisin in milk. Int J Food Microbiol 97(2):215–219. doi:10.1016/j.ijfoodmicro.2004.06.010

    Article  CAS  Google Scholar 

  • Bower CK, Parker JE, Higgins AZ, Oest ME, Wilson JT, Valentine BA, Bothwell MK, McGuire J (2002) Protein antimicrobial barriers to bacterial adhesion: in vitro and in vivo evaluation of nisin-treated implantable materials. Coll Surf B Biointerfer 25(1):81–90. doi:10.1016/S0927-7765(01)00318-6

    Article  CAS  Google Scholar 

  • Brown WV, Collins EB (1977) End products and fermentation balances for lactic streptococci grown aerobically on low concentration of glucose. Appl Environ Microbiol 33(1):38–42

    CAS  Google Scholar 

  • Calderón-Miranda ML, Barbosa-Canovas GV, Swanson BG (1999) Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Int J Food Microbiol 51(1):7–17. doi:10.1016/S0168-1605(99)00070-7

    Article  Google Scholar 

  • Chick JF, Marchesseau K, Gripon JC (1997) Intracellular esterase from Lactococcus lactis subsp. lactis NCDO 763: purification and characterization. Int Dairy J 7(2–3):169–174. doi:10.1016/S0958-6946(97)00001-0

  • Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40(5):539–558. doi:10.1016/j.foodres.2006.11.001

    Article  CAS  Google Scholar 

  • Corsetti A, Gobetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biot 50(2):253–256

    Article  CAS  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins— a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105. doi:10.1038/nrmicro2937

    Article  CAS  Google Scholar 

  • Courtin P, Rul FO (2003) Interactions between microorganisms in a simple ecosystem: yogurt bacteria as a study model. Le Lait 84(1–2):125–134. doi:10.1051/lait:2003031

    Google Scholar 

  • Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380. doi:10.1016/j.foodcont.2009.07.011

    Article  Google Scholar 

  • Dimos A, Urbach GE, Miller AJ (1996) Changes in flavour and volatiles of full-fat and low-fat cheeses during maturation. Int Dairy J 6:981–995

    Article  CAS  Google Scholar 

  • El-Nezami HS, Polychronaki N, Salminen S, Mykkänen H (2002) Binding rather metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative a-zearalenol. Appl Environ Microbiol 68(7):3545–3549. doi:10.1128/AEM.68.7.3545-3549.2002

    Article  CAS  Google Scholar 

  • Ercolini D, Storia A, Villani F, Mauriello G (2006) Effect of a bacteriocins activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J Appl Microbiol 100(4):765–772. doi:10.1111/j.1365-2672.2006.02825.x

    Article  CAS  Google Scholar 

  • Fazeli MR, Hajimohammadali M, Moshkani A, Samadi N, Jamalifar H, Khoshayand MR, Vaghari E, Pouragahi S (2009) Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J Food Protection 72(1):189–192

    Article  CAS  Google Scholar 

  • Florianowicz T (2001) Antifungal activity of some microorganisms against Penicillium expansum. Eur Food Res Technol 212(3):282–286. doi:10.1007/s002170000261

    Article  CAS  Google Scholar 

  • Fuchs S, Sontag G, Stidl R, Ehrlich V, Kundi M, Knasmüller S (2008) Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem Toxicol 46(4):1398–1407. doi:10.1016/j.fct.2007.10.008

    Article  CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120(1–2):51–70. doi:10.1016/j.ijfoodmicro.2007.06.001

    Article  Google Scholar 

  • Goldstein BP, Wei J, Greenberg K, Novick R (1998) Activity of nisin against Streptococcus pneumoniae, in vitro, and in mouse infection model. J Antimic Chemother 42(2):277–278

    Article  CAS  Google Scholar 

  • Gratz S, Mykkänen H, Ouwehand AC, Juvonen R, Salminen S, El-Nezami H (2004) Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Appl Environ Microbiol 70(10):6306–6308. doi:10.1128/AEM.70.10.6306-6308.2004

    Article  CAS  Google Scholar 

  • Hancock REW (1997) Peptide antibiotics. Lancet 349(9049):418–420. doi:10.1016/S0140-6736(97)80051-7

    Article  CAS  Google Scholar 

  • Holzapfel WH, Schillinger U, Du Toit M, Dicks L (1997) Systematics of probiotic lactic acid bacteria. Microecol Ther 26:1–10

    Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73(2 Suppl):365S–373S

    CAS  Google Scholar 

  • Imhof R, Glatti H, Bosset JO (1994) Volatile organic compounds produced by thermophilic and mesophilic single strain dairy starter cultures. Lebensm-Wiss-Technol 28(1):78–86. doi:10.1016/S0023-6438(95)80016-6

    Article  Google Scholar 

  • Jay JM (2000) Fermentation and fermented dairy products. In: Jay JM (ed) Modern food microbiology, 6th edn. Aspen Publication, Springer US, New York, pp. 113–130. doi:10.1007/978-1-4615-4427-2_7

  • Kabara J, Eklund T (1991) Organic acid and esters. In: Russel NJ, Gould GW (eds), Food Preservatives. Blackie, Glasgow and London, pp. 44–71

    Google Scholar 

  • Kroger M (1976) Quality of yogurt. J Dairy Sci 59(2):344–50

    Google Scholar 

  • Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69(1):634–640. doi:10.1128/AEM.69.1.634-640.2003

    Article  CAS  Google Scholar 

  • Ledenbach LH, Marshall RT (2009) Microbiological spoilage of dairy products. In: Sperber WH, Doyle MP (eds) Compendium of the microbiological spoilage of food and beverages. Springer, New York, pp 41–67

    Chapter  Google Scholar 

  • Linares DM, Del Río B, Ladero V, Martínez N, Fernández M, Martín MC, Alvarez MA (2012) Factors influencing biogenic amines accumulation in dairy products. Front Microbiol 3:180. doi:10.3389/fmicb.2012.00180

    Article  Google Scholar 

  • Lourens-Hattingh A, Viljoen BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11(1–2):1–17. doi:10.1016/S0958-6946(01)00036-X

    Article  Google Scholar 

  • Martley FG, Crow VL (1993) Interactions between non-starter microorganisms during cheese manufacture and ripening. Int Dairy J 3(4):641–464. doi:10.1016/0958-6946(93)90027-W

  • Mauriello G, Ercolini D, La Storia A, Casaburi A, Villani F (2004) Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol 97(2):314–322. doi:10.1111/j.1365-2672.2004.02299.x

    Article  CAS  Google Scholar 

  • McSweeney PLH, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80(3):293–324. doi:10.1051/lait:2000127

    Article  CAS  Google Scholar 

  • Morales P, Fernandez-Garcia E, Gaya P, Nunez M (2003) Formation of volatile compounds by wild Lactococcus lactis strains isolated from raw ewes’ milk cheese. Int Dairy J 13(2–3):201–209. doi:10.1016/S0958-6946(02)00151-6

    Article  CAS  Google Scholar 

  • Niderkorn V, Boudra H, Morgavi DP (2006) Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Appl Environ Microbiol 101(4):849–856. doi:0.1111/j.1365-2672.2006.02958.x

    Google Scholar 

  • Nilsson L, Chen Y, Chikindas ML, Huss HH, Gram L, Montville TJ (2000) Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Appl Environ Microbiol 66(2):769–774

    Article  CAS  Google Scholar 

  • Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57(11):5572–5579. doi:10.1128/AAC.00888-13

    Article  CAS  Google Scholar 

  • O’Sullivan DJ, Giblin L, McSweeney PL, Sheehan JJ, Cotter PD (2013) Nucleic acid-based approaches to investigate microbial-related cheese quality defects. Front Microbiol 4:1. doi:10.3389/fmicb.2013.00001

    Google Scholar 

  • Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185. doi:10.1111/j.1365-2672.2006.02963.x

    Article  CAS  Google Scholar 

  • Pawar DD, Malik SVS, Bhilegaonkar KN, Barbuddhe SB (2000) Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Sci 56(3):215–219. doi:10.1016/S0309-1740(00)00043-7

    Article  CAS  Google Scholar 

  • Piard JC, Desmazeaud M (1991) Inhibition factors produced by lactic acid bacteria: Oxygen metabolites and catabolism end-products. Lait 71(5):525–541. doi:10.1051/lait:1991541

    Article  CAS  Google Scholar 

  • Plengvidhya V, Breidt F, Lu Z, Fleming HP (2007) DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Env Microbiol 73(23):7697–7702. doi:10.1128/AEM.01342-07

    Article  CAS  Google Scholar 

  • Rilla N, Martínes-Delgado T, Rodríguez A (2003) Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococus lactis ssp. lactis IPLA 729, a nisin Z producer. Int J Food Microbiol 85(1–2):23–33. doi:10.1016/S0168-1605(02)00478-6

    Article  CAS  Google Scholar 

  • Ross AIV, Griffiths MW, Mittal GS, Deeth HC (2003) Combining nonthermal technologies to control foodborne microorganisms. Int J Food Microbiol 89(2–3):125–138. doi:10.1016/S0168-1605(03)00161-2

    Article  Google Scholar 

  • Routray W, Mishra HN (2011) Scientific and technical aspects of yogurt aroma and taste: a review. Compr Rev Food Sci Food Saf 10(4):208–220. doi:10.1111/j.1541-4337.2011.00151.x

    Article  CAS  Google Scholar 

  • Ryan MP, Rea MC, Hill C, Ross RP (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62(2):612–619

    CAS  Google Scholar 

  • Ryan MP, Meaney WJ, Ross RP, Hill C (1998) Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl Environ Microbiol 64(6):2287–2290

    CAS  Google Scholar 

  • Schmidt RH (2008) Microbiological considerations related to dairy processing. In: Chandan RC (ed) Dairy processing and quality assurance, pp. 105–143. Wiley-Blackwell, Oxford. doi:10.1002/9780813804033.ch5

  • Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Tech 16(1–3):70–78. doi:10.1016/j.tifs.2004.02.014

    Article  Google Scholar 

  • Sears PM, Smith BS, Stewart WK, Gonazalez RN (1992) Evaluation of a nisin-based germicidal formulation on teat skin of live cows. J Dairy Sci 75(11):3185–3190. doi:10.3168/jds.S0022-0302(92)78083-7

    Article  CAS  Google Scholar 

  • Shannon EL, Olson NF, Deibel RH (1977) Oxidative metabolism of lactic acid bacteria associated with pink discoloration in Italian cheese. J Dairy Sci 60(11):693–1697. doi:10.3168/jds.S0022-0302(77)84092-7

    Article  Google Scholar 

  • Smit G, Smit BA, Engels WJ (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29(3):591–610

    Article  CAS  Google Scholar 

  • Sobrino-Lopez A, Martin Belloso O (2006) Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. J Food Prot 69(2):345–353

    Article  CAS  Google Scholar 

  • Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram negative bacteria. Appl Environ Microbiol 57(12):3613–3615

    CAS  Google Scholar 

  • Tamime AY (2002) Microbiology of starter cultures. In: Robinson RK (ed) Dairy microbiology handbook, 3rd edn. John Wiley & Sons, New York, pp 261–367

    Google Scholar 

  • Van Kranenburg R, Kleerebezem M, van Hylckama Vlieg JET, Ursing BM, Boekhorst J, Smit BA, Ayada EHE, Smita G, Siezen RJ (2002) Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. Int Dairy J 12(2–3):111–121. doi:10.1016/S0958-6946(01)00132-7

    Article  Google Scholar 

  • Verluyten J, Messens W, De Vuyst L (2004a) Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage. Appl Environ Microbiol 70(4):2271–2278. doi:10.1128/AEM.70.4.2271-2278.2004

    Article  CAS  Google Scholar 

  • Verluyten J, Leroy F, De Vuyst L (2004b) Influence of complex nutrient source on growth of and curvacin a production by sausage isolate Lactobacillus curvatus LTH 1174. Appl Environ Microbiol 70(9):5081–5088. doi:10.1128/AEM.70.9.5081-5088.2004

    Article  CAS  Google Scholar 

  • Widyastuti Y, Rohmatussolihat Febrisiantosa A (2014) The role of lactic acid bacteria in milk fermentation. Food Nutr Sci 5(4):435–442. doi:10.4236/fns.2014.54051

    Article  Google Scholar 

  • Yang TX, Wu KY, Wang F, Liang XL, Liu QS, Li G, Li QY (2014a) Effect of exopolysaccharides from lactic acid bacteria on the texture and microstructure of buffalo yoghurt. Int Dairy J 34(2):252–256. doi:10.1016/j.idairyj.2013.08.007

    Article  CAS  Google Scholar 

  • Yang SC, Lin CH, Sung CT, Fang JY (2014b) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241. doi:10.3389/fmicb.2014.00241

    Google Scholar 

  • Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria: a review article. APCBEE Proc 2:50–56. doi:10.1016/j.apcbee.2012.06.010

    Article  CAS  Google Scholar 

  • Zoon P, Allersma D (1996) Eye and crack formation in cheese by carbon dioxide from decarboxylation of glutamic acid. Netherlands Milk Dairy J 50(2):309–318

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Ameen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Ameen, S.M., Caruso, G. (2017). Lactic Acid and Lactic Acid Bacteria: Current Use and Perspectives in the Food and Beverage Industry. In: Lactic Acid in the Food Industry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-58146-0_5

Download citation

Publish with us

Policies and ethics