Advertisement

GraphITA pp 197-210 | Cite as

Protein-Based Nanostructures and Their Self-assembly with Graphene Oxide

Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Proteins are hetero-polymers made-up of single building blocks (aminoacids) whose composition determines folding and final architecture. Some proteins are able to undergo self-assembly process enabling the formation of ordered molecular aggregates that in some cases assume conformations particularly suitable to nanotechnological applications. In this work we describe the properties of a ring-like decameric protein, Peroxiredoxin (Prx), to build composite materials interacting with or catalyzing the formation of selectively metal nanoparticles that can be trapped over the surface of nanostructured graphene oxide (GO) sheets. We demonstrate furthermore the ability of Prx to guide the formation of 3D layers of GO embedding metal nanoparticles in the composite material. These composites are discussed as possible precursors to electronic and chemical devices.

References

  1. 1.
    Angelucci, F., Bellelli, A., Ardini, M., Ippoliti, R., Saccoccia, F., Morea, V.: One ring (or two) to hold them all—on the structure and function of protein nanotubes. FEBS J. 282(15), 2827–2845 (2015)CrossRefGoogle Scholar
  2. 2.
    Angelucci, F., Saccoccia, F., Ardini, M., Boumis, G., Brunori, M., Di Leandro, L., Ippoliti, R., Miele, A.E., Natoli, G., Scotti, S., Bellelli, A.: Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis. J. Mol. Biol. 425(22), 4556–4568 (2013)CrossRefGoogle Scholar
  3. 3.
    Ardini, M., Giansanti, F., Di Leandro, L., Pitari, G., Cimini, A., Ottaviano, L., Donarelli, M., Santucci, S., Angelucci, F., Ippoliti, R.: Metal-induced self-assembly of peroxiredoxin as a tool for sorting ultrasmall gold nanoparticles into one-dimensional clusters. Nanoscale 6, 8052–8061 (2014)CrossRefGoogle Scholar
  4. 4.
    Ardini, M., Golia, G., Passaretti, P., Cimini, A., Pitari, G., Giansanti, F., Di Leandro, L., Ottaviano, L., Perrozzi, F., Santucci, S., Morandi, V., Ortolani, L., Christian, M., Treossi, E., Palermo, V., Angelucci, F., Ippoliti, R.: Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale 8, 6739–6753 (2016)CrossRefGoogle Scholar
  5. 5.
    Bai, C., Zhao, Q., Yang, L., Zhang, G., Zhang, F., Fan, X.: Palladium complex immobilized on graphene oxide as an efficient and recyclable catalyst for Suzuki coupling reaction. Catal. Lett. 144, 1617–1623 (2014)CrossRefGoogle Scholar
  6. 6.
    Bai, H., Li, C., Wang, X., Shi, G.: On the gelation of graphene oxide. J. Phys. Chem. C 115, 5545–5551 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, D., Li, L., Guo, L.: An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22, 325601 (2011)CrossRefGoogle Scholar
  8. 8.
    Chen, W., Yan, L., Bangal, P.R.: Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 114, 19885–19890 (2010)CrossRefGoogle Scholar
  9. 9.
    de la Rica, R., Matsui, H.: Applications of peptide and protein-based materials in bionanotechnology. Chem. Soc. Rev. 39, 3499–3509 (2010)CrossRefGoogle Scholar
  10. 10.
    Dreyer, D.R., Jia, H., Todd, A.D., Geng, J., Bielawski, C.W.: Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem. 9, 7292–7295 (2011)CrossRefGoogle Scholar
  11. 11.
    Fang, Q., Shen, Y., Chen, B.: Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review. Chem. Eng. J. 264, 753–771 (2015)CrossRefGoogle Scholar
  12. 12.
    Feynman, R.P.: There’s Plenty of Room at the Bottom. American Physical Society, Pasadena (1959)Google Scholar
  13. 13.
    Gerrard, J.A. (ed.): Protein Nanotechnology: Protocols, Instrumentation, and Applications, Methods in Molecular Biology, vol. 996 (2013)Google Scholar
  14. 14.
    Gradišar, H., Jerala, R.: Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. J. Nanobiotechnol. 12, 4 (2014)CrossRefGoogle Scholar
  15. 15.
    He, D., Marles-Wright, J.: Ferritin family proteins and their use in bionanotechnology. New Biotechnol. 32, 651–657 (2015)CrossRefGoogle Scholar
  16. 16.
    Heddle, J.G.: Protein cages, rings and tubes: useful components of future nanodevices? Nanotechnol. Sci. Appl. 1, 67–78 (2008)Google Scholar
  17. 17.
    Liu, J., Fu, S., Yuan, B., Li, Y., Deng, Z.: Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281 (2010)CrossRefGoogle Scholar
  18. 18.
    Lin, J., Mei, T., Lv, M., Zhang, C., Zhao, Z., Wang, X.: Size-controlled PdO/graphene oxides and their reduction products with high catalytic activity. RSC Adv. 4, 29563–29570 (2014)CrossRefGoogle Scholar
  19. 19.
    Liu, L., Liu, S., Zhang, Q., Li, C., Bao, C., Liu, X., Xiao, P.: Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J. Chem. Eng. Data 58, 209–216 (2013)CrossRefGoogle Scholar
  20. 20.
    Ma, Y., Chen, Y.: Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2, 40–53 (2015)CrossRefGoogle Scholar
  21. 21.
    Maine, E., Thomas, V.J., Bliemel, M., Murira, A., Utterback, J.: The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 9, 2–9 (2014)CrossRefGoogle Scholar
  22. 22.
    McNeil, S.E.: Nanotechnology for the biologist. J. Leukocyte Biol. 78, 585–594 (2005)CrossRefGoogle Scholar
  23. 23.
    Nardecchia, S., Carriazo, D., Ferrer, M.L., Gutiérrez, M.C., del Monte, F.: Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42, 794–830 (2013)CrossRefGoogle Scholar
  24. 24.
    Palermo, V., Samorì, P.: Molecular self-assembly across multiple length scales. Angew. Chem. Int. Ed. 46, 4428–4432 (2007)CrossRefGoogle Scholar
  25. 25.
    Patil, A.J., Mann, S.: Self-assembly of bio-inorganic nanohybrids using organoclay building blocks. J. Mater. Chem. 18, 4605–4615 (2008)CrossRefGoogle Scholar
  26. 26.
    Patil, A.J., Vickery, J.L., Scott, T.B., Mann, S.: Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 21, 3159–3164 (2009)CrossRefGoogle Scholar
  27. 27.
    Saccoccia, F., Di Micco, P., Boumis, G., Brunori, M., Koutris, I., Miele, A.E., Morea, V., Sriratana, P., Williams, D.L., Bellelli, A., Angelucci, F.: Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure. 20(3), 429–439 (2012)CrossRefGoogle Scholar
  28. 28.
    Šimšíková, M.: Interaction of graphene oxide with albumins: effect of size, pH, and temperature. Arch. Biochem. Biophys. 593, 69–79 (2016)CrossRefGoogle Scholar
  29. 29.
    Takeda, Y., Mae, S., Kajikawa, Y., Matsushima, K.: Nanobiotechnology as an emerging research domain from nanotechnology: a bibliometric approach. Scientometrics 80, 25–40 (2009)CrossRefGoogle Scholar
  30. 30.
    Wang, Z., Lv, X., Chen, Y., Liu, D., Xu, X.G., Palmore, T.R., Hurt, R.H.: Crumpled graphene nanoreactors. Nanoscale 7, 10267–10278 (2015)CrossRefGoogle Scholar
  31. 31.
    Wei, X.Q., Hao, L.Y., Shao, X.R., Zhang, Q., Jia, X.Q., Zhang, Z.R., Lin, Y.F., Peng, Q.: Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Appl. Mater. Interfaces. 7, 13367–13374 (2015)CrossRefGoogle Scholar
  32. 32.
    Whitby, R.L.D.: Chemical control of graphene architecture: tailoring shape and properties. ACS Nano 8, 9733–9754 (2014)CrossRefGoogle Scholar
  33. 33.
    Whitesides, G.M., Boncheva, M.: Beyond molecules: self-assembly of mesoscopic and macroscopic components. PNAS 99, 4769–4774 (2002)CrossRefGoogle Scholar
  34. 34.
    Whitesides, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991)CrossRefGoogle Scholar
  35. 35.
    Xiao, Z., Wedd, A.G.: The challenges of determining metal-protein affinities. Nat. Prod. Rep. 27, 768–789 (2010)CrossRefGoogle Scholar
  36. 36.
    Xu, Y., Wu, Q., Sun, Y., Bai, H., Shi, G.: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4, 7358–7362 (2010)CrossRefGoogle Scholar
  37. 37.
    Zeng, Q., Cheng, J., Tang, L., Liu, X., Liu, Y., Li, J., Jiang, J.: Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv. Funct. Mater. 20, 3366–3372 (2010)CrossRefGoogle Scholar
  38. 38.
    Zhang, Y., Wu, C., Guo, S., Zhang, J.: Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2, 27–45 (2013)Google Scholar
  39. 39.
    Zhao, Z., Wang, X., Qiu, J., Lin, J., Xu, D., Zhang, C., Lv, M., Yang, X.: Three-dimensional graphene-based hydrogel/aerogel materials. Rev. Adv. Mater. Sci. 36, 137–151 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of Physics and ChemistryUniversity of L’AquilaL’AquilaItaly
  3. 3.National Research CouncilInstitute for Microelectronics and MicrosystemsBolognaItaly

Personalised recommendations