Dynamics of Self-replicating DNA-Tile Patterns

  • Vinay Kumar Gautam
  • Rajendra Prasath
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10089)


DNA tiles serve as molecular components for the self-assembly of programmable 2-dimensional patterns at the nanoscale. To produce identical copies of a pre-assembled DNA tile pattern, we use a theoretical framework of non enzymatic cross-coupled self-replication system based on tile self-assembly model. This paper presents a kinetic modelling of the pattern self-replication and analyses the influence of physicochemical parameters of tile self-assembly process over the reliability and replication gain. We demonstrate that the tile assembly errors, introduced in tile patterns during their assembly, set a limit over the size of a tile pattern that can be replicated exponentially and reliably.


Self-replication DNA tile DNA self-assembly Tile pattern 


  1. 1.
    Abel, Z., Benbernou, N., Damian, M., Demaine, E.D., Demaine, M.L., Flatland, R.Y., Kominers, S.D., Schweller, R.T.: Shape replication through self-assembly and RNase enzymes. In: SODA, pp. 1045–1064. SIAM (2010)Google Scholar
  2. 2.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Symposium on Theory of Computing (STOC), New York, pp. 740–748 (2001)Google Scholar
  3. 3.
    Barish, R.D., Rothemund, P.W., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  4. 4.
    Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fujibayashi, K., Zhang, D.Y., Winfree, E., Murata, S.: Error suppression mechanisms for DNA tile self-assembly and their simulation. Nat. Comput. 8(3), 589–612 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gautam, V.K., Czeizler, E., Haddow, P.C., Kuiper, M.: Design of a minimal system for self-replication of rectangular patterns of DNA tiles. In: Dediu, A.-H., Lozano, M., Martín-Vide, C. (eds.) TPNC 2014. LNCS, vol. 8890, pp. 119–133. Springer, Cham (2014). doi: 10.1007/978-3-319-13749-0_11 Google Scholar
  7. 7.
    Gautam, V.K., Haddow, P.C., Kuiper, M.: Reliable self-assembly by self-triggered activation of enveloped DNA tiles. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 68–79. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45008-2_6 CrossRefGoogle Scholar
  8. 8.
    Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005). doi: 10.1007/11493785_6 CrossRefGoogle Scholar
  9. 9.
    Keenan, A., Schweller, R.T., Zhong, X.: Exponential replication of patterns in the signal tile assembly model. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 118–132. Springer, Cham (2013). doi: 10.1007/978-3-319-01928-4_9 CrossRefGoogle Scholar
  10. 10.
    von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25(10), 932–935 (1986)CrossRefGoogle Scholar
  11. 11.
    Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: compact, robust programmable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77962-9_2 CrossRefGoogle Scholar
  12. 12.
    Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)CrossRefGoogle Scholar
  13. 13.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, pp. 459–468. ACM (2000)Google Scholar
  14. 14.
    Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 734–743. Springer, Heidelberg (2005). doi: 10.1007/11553090_74 CrossRefGoogle Scholar
  15. 15.
    Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. Proc. Natl. Acad. Sci. 109(17), 6405–6410 (2012)CrossRefGoogle Scholar
  16. 16.
    Szathmry, E., Gladkih, I.: Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138(1), 55–58 (1989)CrossRefGoogle Scholar
  17. 17.
    Wang, H.: Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1–42 (1961)CrossRefGoogle Scholar
  18. 18.
    Wang, T., Sha, R., Dreyfus, R., Leunissen, M.E., Maass, C., Pine, D.J., Chaikin, P.M., Seeman, N.C.: Self-replication of information-bearing nanoscale patterns. Nature 478(7368), 225–228 (2011)CrossRefGoogle Scholar
  19. 19.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  20. 20.
    Winfree, E.: Algorithmic Self-Assembly of DNA. Ph. D. thesis, California Institute of Technology Pasadena, California, USA (1998)Google Scholar
  21. 21.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: error correction for algorithmic self-assembly. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24628-2_13 CrossRefGoogle Scholar
  22. 22.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhang, D.Y., Yurke, B.: A DNA superstructure-based replicator without product inhibition. Nat. Comput. 5(2), 183–202 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceThe Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations