An Efficient Incremental Mining Algorithm for Dynamic Databases

  • Lydia Nahla Driff
  • Habiba Drias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10089)


Data mining is aimed to extract hidden acknowledge from large dataset, in order to exploit it for predicting future trends and make decisions. Extracting meaningful and useful candidate optimally is handled by several algorithms, mainly those based on exploring incoming data, which can lose information. To address this issue, this paper proposes an algorithm named Incremental Apriori (IncA) for discovering frequent itemsets in transaction databases, which is in fact a variant of the well-known Apriori algorithm. In IncA, we introduce a notion of promising items generated from the original database, an incremental technique applied on incremental database and a health check process to ensure candidate generation completeness. On the theoretical side, our algorithm exhibits the best computational complexity compared to the recent state-of-the-art algorithms. On the other hand, we tested the proposed approach on large synthetic databases. The obtained results prove that IncA reduces the running time as well as the search space and also show that our algorithm performs better than the Apriori algorithm.


Datamining Dynamic database Apriori Incremental technique Machine Learning Techniques 


  1. 1.
    Jiewai, H., Kamber, M.: Data Mining: Concepts and Techniques. Morgann Kaufmann, San Francisco (2011)Google Scholar
  2. 2.
    Information overload. Nature 460, 551 (2009). doi: 10.1038/460551a. Accessed 29 July 2009
  3. 3.
    Leung, C.K.-S., Khan, Q.I., Li, Z., Hoque, T.: CanTree: a canonical-order tree for incremental frequent pattern mining. Knowl. Inf. Syst. 11(3), 287–311 (2007)Google Scholar
  4. 4.
    Rakesh, A., Ramakrishnan, S.: Fast algorithms for mining association rules. In: 20th International Conference on Very Large Data Bases, Chile, pp. 487–499 (1994)Google Scholar
  5. 5.
    Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Pascal: un algorithme d’extraction des motifs fréquents, pp. 65–95. Techniques et Sciences Informatiques, Editions Hermès (2002)Google Scholar
  6. 6.
    Han, J.L., Plank, A.W.: Background for association rules and cost estimate of selected mining algorithms. In: 5th International CIKM, USA, pp. 73–80 (1996)Google Scholar
  7. 7.
    Zhang, S., Zhang, J., Zhang, C.: EDUA an efficient algorithm for dynamic database mining. Inf. Sci. 177, 2756–2767 (2007)Google Scholar
  8. 8.
    Jiemin, Z., Defu, Z., Leung, S.C.H., Xiyue, Z.: An efficient algorithm for frequent itemsets in data mining. In: ICSSSM, Hong Kong, pp. 1–6. IEEE (2010)Google Scholar
  9. 9.
    Khan, Z., Faujdar, N., Singh, P., Abbas, T.: Modified Bitapriori algorithm: an intelligent approach for mining frequent Ite-Set. In: International Conference on Advance in Signal Processing and Communication, India, pp. 813–819 (2013)Google Scholar
  10. 10.
    Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for mining association rules. In: Proceedings of 1995 ACM SIGMOD International Conference on Management of Dai, San Jose, pp. 175–186 (1995)Google Scholar
  11. 11.
    Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of discovered association rules in large database: an incremental updating technique. In: Proceedings of 12th IEEE International Conference on Data Engineering, pp. 106–114 (1996)Google Scholar
  12. 12.
    Suresh, P., Nithya, K.N., Murugan, K.: Improved generation of frequent item sets using apriori algorithm. IJARCCE Int. J. Adv. Res. Comput. Commun. Eng. 4(10) (2015)Google Scholar
  13. 13.
    Cheung, D.W., Lee, S.D., Kao, B.: A general incremental technique for mining discovered association rules. In: Proceedings of International Conference on Database System for Advanced Applications, pp. 185–194 (1997)Google Scholar
  14. 14.
    Lee, C., Lin, C.R., Chen, M.S.: Sliding-window filtering: an efficient algorithm for incremental mining. In: Proceedings of International Conference on Information and Knowledge Management, CIKM01, pp. 263–270 (2001)Google Scholar
  15. 15.
    Thusaranon, P., Kreesuradej, W.: A probability‑based incremental association rule discovery. In: 19th International Symposium on Artificial Life and Robotics, Oita, pp. 22–24. Department of Information System, Information Technology Faculty Dhurakij Pundit University, Thailand (2014)Google Scholar
  16. 16.
    Yao, Y.Y.: Three-way decision with probabilistic rough sets. Inf. Sci. 180, 341–353. Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada (2010)Google Scholar
  17. 17.
    Wen, P., Li, Y., Polkowski, L., Yao, Y.Y., Tsumoto, S. (eds.): Rough Sets and Knowledge Technology: 4th International Conference, RSKT 2009. LNCS, vol. 5589, pp. 642–649. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Yao, Y.Y: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    Dong, J., Han, M.: BitTableFI an efficient mining frequent itemsets algorithm. Knowl. Based Syst. 20(4), 329–335 (2007)CrossRefGoogle Scholar
  20. 20.
    Niknafs, A., Parsa, S.: A neural network approach for updating ranked association rules, based on data envelopment analysis. J. Artif. Intell. 4, 279–287 (2011). Department of Computer Engineering, Shahid Bahonar University of Kerman, Iran, Asian Network for Scientific Information, IranGoogle Scholar
  21. 21.
    Hegland, M.: The apriori algorithm – a tutorial. In: Mathematics and Computation in Imaging Science and Information Processing, vol. 11, pp. 209–262. World Scientific Publishing (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory (LRIA), Department of Computer ScienceUSTHBBab EzzouarAlgeria

Personalised recommendations