Advertisement

Hybridization of Multi-chaotic Dynamics and Adaptive Control Parameter Adjusting jDE Strategy

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 576)

Abstract

This research deals with the hybridization of several approaches for evolutionary algorithms, which are the adaptive control parameter adjusting strategy and multi-chaotic dynamics driving the selection of indices in Differential Evolution (DE). The novelty of the paper is given by the experiments with the multi-chaos-driven adaptive DE concept inside adaptive parameter adjusting DE strategies. These experiments are representing the investigations on the mutual influences of several different randomizations types together with adaptive DE strategies. The multi-chaotic concept is representing the adaptive switching between two different chaotic systems based on the progress of individuals within population. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of multi-chaotic pseudo random number generators for the jDE, which is the state of the art representative of simple adaptive control parameter adjusting strategy for DE. Repeated simulations for two different combinations of driving chaotic systems were performed on the IEEE CEC 13 benchmark set. Finally, the obtained results are compared with the canonical not-chaotic jDE.

Keywords

Differential Evolution Deterministic chaos jDE 

Notes

Acknowledgements

This work was supported by Grant Agency of the Czech Republic - GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Pro- gramme project No. LO1303 (MSMT-7778/2014) and also by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089., partially supported by Grant of SGS No. SP2016/175 of VSB - Technical University of Ostrava, Czech Republic and by Internal Grant Agency of Tomas Bata University under the project No. IGA/CebiaTech/2016/007.

References

  1. 1.
    Price, K.V.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd., London (1999)Google Scholar
  2. 2.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  3. 3.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  4. 4.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)CrossRefGoogle Scholar
  5. 5.
    Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential evolution. Inf. Sci. 181(12), 2488–2511 (2011)CrossRefGoogle Scholar
  6. 6.
    Neri, F., Iacca, G., Mininno, E.: Disturbed Exploitation compact Differential Evolution for limited memory optimization problems. Inf. Sci. 181(12), 2469–2487 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Iacca, G., Caraffini, F., Neri, F.: Compact differential evolution light: high performance despite limited memory requirement and modest computational overhead. J. Comput. Sci. Technol. 27(5), 1056–1076 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zamuda, A., Brest, J.: Self-adaptive control parameters׳ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015)CrossRefGoogle Scholar
  9. 9.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  10. 10.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math Appl. 60(4), 1088–1104 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Zelinka, I.: SOMA — self-organizing migrating algorithm. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 167–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    dos Santos Coelhoa, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  13. 13.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput. Math Appl. 66(2), 122–134 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), 20–23 June 2013, pp 2444–2449 (2013)Google Scholar
  15. 15.
    Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with Eensemble of chaotic systems. Swarm Evol. Comput. 25, 29–35 (2015)CrossRefGoogle Scholar
  16. 16.
    Metlicka, M., Davendra, D.: Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol. Comput. 25, 15–28 (2015)CrossRefGoogle Scholar
  17. 17.
    Coelho, L.D.S., Ayala, H.V.H., Mariani, V.C.: A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Appl. Math. Comput. 234, 452–459 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Senkerik, R., Pluhacek, M., Davendra, D., Zelinka, I., Oplatkova, Z.K.: Performance testing of multi-chaotic differential evolution concept on shifted benchmark functions. In: Polycarpou, M., Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 306–317. Springer, Cham (2014). doi: 10.1007/978-3-319-07617-1_28 CrossRefGoogle Scholar
  19. 19.
    Senkerik, R., Pluhacek, M., Davendra, D., Zelinka, I., Oplatkova, Z.K., Janostik, J.: Hybridization of adaptivity and chaotic dynamics for differential evolution. In: Matoušek, R. (ed.) Mendel 2015. AISC, vol. 378, pp. 149–158. Springer, Cham (2015). doi: 10.1007/978-3-319-19824-8_12 CrossRefGoogle Scholar
  20. 20.
    Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity – mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)CrossRefGoogle Scholar
  21. 21.
    Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)CrossRefGoogle Scholar
  22. 22.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  23. 23.
    Tvrdík, J., Poláková, R., Veselský, J., Bujok, P.: Adaptive variants of differential evolution: towards control-parameter-free optimizers. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization. ISRL, vol. 38, pp. 423–449. Springer, Berlin Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    ELabbasy, E., Agiza, H., EL-Metwally, H., Elsadany, A.: Bifurcation analysis, chaos and control in the burgers mapping. Int. J. Nonlinear Sci. 4(3), 171–185 (2007)MathSciNetGoogle Scholar
  25. 25.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, New York (2003)zbMATHGoogle Scholar
  26. 26.
    Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernández-Díaz, A.G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization, Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations