Methods for Intrinsic Evaluation of Links in the Web of Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10249)


The current Web of Data contains a large amount of interlinked data. However, there is still a limited understanding about the quality of the links connecting entities of different and distributed data sets. Our goal is to provide a collection of indicators that help assess existing interlinking. In this paper, we present a framework for the intrinsic evaluation of RDF links, based on core principles of Web data integration and foundations of Information Retrieval. We measure the extent to which links facilitate the discovery of an extended description of entities, and the discovery of other entities in other data sets. We also measure the use of different vocabularies. We analysed links extracted from a set of data sets from the Linked Data Crawl 2014 using these measures.


Data integration Links Quality Monitoring Semantic web 



The research leading to these results has received funding from the European Union’s FP7 under grant agreement no. 611242—Sense4Us project. We also thank Thomas Gottron for our discussions at an initial phase of this research, and Leon Kastler for his feedback.


  1. 1.
    Albertoni, R., De Martino, M., Podestà, P.: A linkset quality metric measuring multilingual gain in skos thesauri. In: Linked Data Quality Co-located with ESWC 2015 (2015)Google Scholar
  2. 2.
    Albertoni, R., Pérez, A.G.: Assessing linkset quality for complementing third-party datasets. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, EDBT 2013 (2013)Google Scholar
  3. 3.
    Behkamal, B., Kahani, M., Bagheri, E., Jeremic, Z.: A metrics-driven approach for quality assessment of linked open data. J. Theor. Appl. Electron. Commer. Res. 9(2), 64–79 (2014)CrossRefGoogle Scholar
  4. 4.
    Guéret, C., Groth, P., Stadler, C., Lehmann, J.: Assessing linked data mappings using network measures. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 87–102. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30284-8_13CrossRefGoogle Scholar
  5. 5.
    Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When owl:sameAs isn’t the same: an analysis of identity in linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 305–320. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17746-0_20CrossRefGoogle Scholar
  6. 6.
    Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An empirical survey of linked data conformance. Web Semant. Sci. Serv. Agents World Wide Web 14, 14–44 (2012)CrossRefGoogle Scholar
  7. 7.
    Hu, W., Qiu, H., Dumontier, M.: Link analysis of life science linked data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 446–462. Springer, Cham (2015). doi: 10.1007/978-3-319-25010-6_29CrossRefGoogle Scholar
  8. 8.
    Schmachtenberg, M., Christian Bizer, A.J., Cyganiak, R.: Linking open data cloud diagram (2014).
  9. 9.
    Neto, C.B., Kontokostas, D., Hellmann, S., Müller, K., Brümmer, M.: Assessing quantity and quality of links between linked data datasets (2016)Google Scholar
  10. 10.
    Pandian, C.R.: Software Metrics: A Guide to Planning, Analysis, and Application. CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  11. 11.
    Rula, A., Zaveri, A.: Methodology for assessment of linked data quality. In: LDQ@ SEMANTICS (2014)Google Scholar
  12. 12.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_16CrossRefGoogle Scholar
  13. 13.
    Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked open data: a survey. Semanti. Web J. (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Web Science and TechnologiesUniversity of Koblenz-LandauKoblenzGermany
  2. 2.WAIS Research GroupUniversity of SouthamptonSouthamptonUK

Personalised recommendations