SM4MQ: A Semantic Model for Multidimensional Queries

  • Jovan VargaEmail author
  • Ekaterina Dobrokhotova
  • Oscar Romero
  • Torben Bach Pedersen
  • Christian Thomsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10249)


On-Line Analytical Processing (OLAP) is a data analysis approach to support decision-making. On top of that, Exploratory OLAP is a novel initiative for the convergence of OLAP and the Semantic Web (SW) that enables the use of OLAP techniques on SW data. Moreover, OLAP approaches exploit different metadata artifacts (e.g., queries) to assist users with the analysis. However, modeling and sharing of most of these artifacts are typically overlooked. Thus, in this paper we focus on the query metadata artifact in the Exploratory OLAP context and propose an RDF-based vocabulary for its representation, sharing, and reuse on the SW. As OLAP is based on the underlying multidimensional (MD) data model we denote such queries as MD queries and define SM4MQ: A Semantic Model for Multidimensional Queries. Furthermore, we propose a method to automate the exploitation of queries by means of SPARQL. We apply the method to a use case of transforming queries from SM4MQ to a vector representation. For the use case, we developed the prototype and performed an evaluation that shows how our approach can significantly ease and support user assistance such as query recommendation.


Semantic Web Vocabulary OLAP Query modeling 



This research has been funded by the European Commission through the Erasmus Mundus Joint Doctorate IT4BI-DC and it has been partially supported by the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya, the grant number 2014 SGR-1534.


  1. 1.
    Abelló, A., et al.: Using semantic web technologies for exploratory OLAP: a survey. IEEE Trans. Knowl. Data Eng. 27(2), 571–588 (2015)CrossRefGoogle Scholar
  2. 2.
    Aggarwal, C.C.: Recommender Systems - The Textbook. Springer, New York (2016)CrossRefGoogle Scholar
  3. 3.
    Aligon, J., et al.: Similarity measures for OLAP sessions. Knowl. Inf. Syst. 39(2), 463–489 (2014)CrossRefGoogle Scholar
  4. 4.
    Aligon, J., et al.: A collaborative filtering approach for recommending OLAP sessions. Decis. Support Syst. 69, 20–30 (2015)CrossRefGoogle Scholar
  5. 5.
    Aufaure, M.-A., Kuchmann-Beauger, N., Marcel, P., Rizzi, S., Vanrompay, Y.: Predicting your next OLAP query based on recent analytical sessions. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 134–145. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40131-2_12CrossRefGoogle Scholar
  6. 6.
    Chatzopoulou, G., et al.: The QueRIE system for personalized query recommendations. IEEE Data Eng. Bull. 34(2), 55–60 (2011)Google Scholar
  7. 7.
    Cyganiak, R., et al.: Resource description framework (RDF): concepts and abstract syntax (2014).
  8. 8.
    de Aguiar Ciferri, C.D., et al.: Cube algebra: a generic user-centric model and query language for OLAP cubes. IJDWM 9(2), 39–65 (2013)Google Scholar
  9. 9.
    Etcheverry, L., et al.: Modeling and querying data cubes on the semantic web. CoRR, abs/1512.06080 (2015)Google Scholar
  10. 10.
    Etcheverry, L., Vaisman, A.A.: Querying semantic web data cubes. In: AMW (2016)Google Scholar
  11. 11.
    Follenfant, C., Corby, O.: SQL abstract syntax trees vocabulary (2014).
  12. 12.
    Golfarelli, M., et al.: The dimensional fact model: a conceptual model for data warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)CrossRefGoogle Scholar
  13. 13.
    Heath, T., Bizer, C., Data, L.: Evolving the Web into a Global Data Space. Morgan & Claypool Publishers, Seattle (2011)Google Scholar
  14. 14.
    Jensen, C.S., et al.: Multidimensional Databases and Data Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, Seattle (2010)zbMATHGoogle Scholar
  15. 15.
    Knublauch, H.: SPIN - SPARQL syntax (2013).
  16. 16.
    Pardillo, J., et al.: Extending OCL for OLAP querying on conceptual multidimensional models of data warehouses. Inf. Sci. 180(5), 584–601 (2010)CrossRefGoogle Scholar
  17. 17.
    Prud’hommeaux, E., Seaborne, A.: SPARQL 1.1 Query Language for RDF (2011)Google Scholar
  18. 18.
    Romero, O., Abelló, A.: On the need of a reference algebra for OLAP. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99–110. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74553-2_10CrossRefGoogle Scholar
  19. 19.
    Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 261–269. Springer, Cham (2015). doi: 10.1007/978-3-319-25010-6_15CrossRefGoogle Scholar
  20. 20.
    Strange, K.: ETL was the key to this data warehouse’s success. Gartner Research, CS-15-3143, 3 (2002)Google Scholar
  21. 21.
    Varga, J.: SM4MQ materials (2016).
  22. 22.
    Varga, J., et al.: SM4AM: a semantic metamodel for analytical metadata. In: DOLAP, pp. 57–66 (2014)Google Scholar
  23. 23.
    Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: Towards next generation BI systems: the analytical metadata challenge. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 89–101. Springer, Cham (2014). doi: 10.1007/978-3-319-10160-6_9CrossRefGoogle Scholar
  24. 24.
    Varga, J., et al.: Dimensional enrichment of statistical linked open data. J. Web Sem. 40, 22–51 (2016)CrossRefGoogle Scholar
  25. 25.
    Varga, J., et al.: QB2OLAP: enabling OLAP on statistical linked open data. In: ICDE, pp. 1346–1349 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jovan Varga
    • 1
    Email author
  • Ekaterina Dobrokhotova
    • 1
  • Oscar Romero
    • 1
  • Torben Bach Pedersen
    • 2
  • Christian Thomsen
    • 2
  1. 1.Universitat Politècnica de Catalunya, BarcelonaTechBarcelonaSpain
  2. 2.Aalborg UniversitetAalborgDenmark

Personalised recommendations