Tuning Personalized PageRank for Semantics-Aware Recommendations Based on Linked Open Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10249)


In this article we investigate how the knowledge available in the Linked Open Data cloud (LOD) can be exploited to improve the effectiveness of a semantics-aware graph-based recommendation framework based on Personalized PageRank (PPR).

In our approach we extended the classic bipartite data model, in which only user-item connections are modeled, by injecting the exogenous knowledge about the items which is available in the LOD cloud. Our approach works in two steps: first, all the available items are automatically mapped to a DBpedia node; next, the resources gathered from DBpedia that describe the item are connected to the item nodes, thus enriching the original representation and giving rise to a tripartite data model. Such a data model can be exploited to provide users with recommendations by running PPR against the resulting representation and by suggesting the items with the highest PageRank score.

In the experimental evaluation we showed that our semantics-aware recommendation framework exploiting DBpedia and PPR can overcome the performance of several state-of-the-art approaches. Moreover, a proper tuning of PPR parameters, obtained by better distributing the weights among the nodes modeled in the graph, further improved the overall accuracy of the framework and confirmed the effectiveness of our strategy.


Graphs Recommender systems Linked open data PageRank 


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76298-0_52CrossRefGoogle Scholar
  2. 2.
    Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for YouTube: taking Random Walks through the view graph. In: Proceedings of the 17th International Conference on World Wide Web, pp. 895–904. ACM (2008)Google Scholar
  3. 3.
    Basile, P., Musto, C., de Gemmis, M., Lops, P., Narducci, F., Semeraro, G.: Aggregation strategies for linked open data-enabled recommender systems. In: European Semantic Web Conference (ESWC) (2014)Google Scholar
  4. 4.
    Basile, P., Musto, C., Gemmis, M., Lops, P., Narducci, F., Semeraro, G.: Content-based recommender systems + DBpedia knowledge = semantics-aware recommender systems. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Iorio, A., Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 163–169. Springer, Cham (2014). doi: 10.1007/978-3-319-12024-9_21CrossRefGoogle Scholar
  5. 5.
    Baumann, S., Schirru, R.: Using linked open data for novel artist recommendations. In: Proceedings of the 13th International Society for Music Information Retrieval Conference, ISMIR (2012)Google Scholar
  6. 6.
    Bizer, C.: The emerging web of linked Data. IEEE Intell. Syst. 24(5), 87–92 (2009)CrossRefGoogle Scholar
  7. 7.
    Bogers, T.: Movie recommendation using Random walks over the contextual graph. In: Proceedings of the 2nd International Workshop on Context-Aware Recommender Systems (2010)Google Scholar
  8. 8.
    Bostandjiev, S., O’Donovan, J., Höllerer, T.: TasteWeights: a visual interactive hybrid recommender system. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 35–42. ACM (2012)Google Scholar
  9. 9.
    de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.), Recommender Systems Handbook, pp. 119–159. Springer (2015)Google Scholar
  10. 10.
    de Gemmis, M., Lops, P., Semeraro, G., Musto, C.: An investigation on the serendipity problem in recommender systems. Inf. Process. Manage. 51(5), 695–717 (2015)CrossRefGoogle Scholar
  11. 11.
    Haveliwala, T.H.: Topic-sensitive PageRank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)CrossRefGoogle Scholar
  12. 12.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G., Althoff, K.-D.: FolkRank: A ranking algorithm for folksonomies. In: LWA, vol. 1, pp. 111–114 (2006)Google Scholar
  13. 13.
    Kantor, P.B., Rokach, L., Ricci, F., Shapira, B.: Recommender Systems Handbook. Springer, New York (2011)zbMATHGoogle Scholar
  14. 14.
    Musto, C., Lops, P., Basile, P., de Gemmis, M., Semeraro, G.: Semantics-aware graph-based recommender systems exploiting linked open data. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, UMAP 2016, pp. 229–237. ACM, New York (2016)Google Scholar
  15. 15.
    Musto, C., Semeraro, G., Lops, P., Gemmis, M., Narducci, F.: Leveraging social media sources to generate personalized music playlists. In: Huemer, C., Lops, P. (eds.) EC-Web 2012. LNBIP, vol. 123, pp. 112–123. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32273-0_10CrossRefGoogle Scholar
  16. 16.
    Nguyen, P.T., Tomeo, P., Noia, T., Sciascio, E.: Content-based recommendations via DBpedia and freebase: a case study in the music domain. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 605–621. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_35CrossRefGoogle Scholar
  17. 17.
    Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-N recommendations from implicit feedback leveraging linked open data. In: Proceedings of the ACM Conference on Recommender Systems, pp. 85–92. ACM (2013)Google Scholar
  18. 18.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web (1999)Google Scholar
  19. 19.
    Passant, A.: dbrec — Music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17749-1_14CrossRefGoogle Scholar
  20. 20.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Bari Aldo MoroBariItaly

Personalised recommendations