Skip to main content

From Chaos to Order in a Ring of Coupled Oscillators with Frequency Mismatch

  • Chapter
  • First Online:
Regularity and Stochasticity of Nonlinear Dynamical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 21))

  • 716 Accesses

Abstract

In this chapter we describe the route to synchronization in a ring of three unidirectionally in the presence of a mismatch between their natural frequencies. Three coupled oscillators is a simplest network motif where each oscillator is nothing more than a node. Network motifs repeat themselves in a specific network or even among various networks, and can be responsible for particular functions. On the route to synchronization the oscillators pass through intermittent phase synchronization , phase synchronization , lag or anticipating synchronization with respect to the coupling strength and frequency mismatch. When the oscillators’ natural frequencies are very close to each other, they are chaotic for any coupling strength, whereas for larger mismatch and strong coupling they exhibit regular dynamics. The results of numerical simulations are in good agreement with electronic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  2. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: Phys. Rep. 366, 1 (2002)

    Google Scholar 

  3. Fujisaka, H., Yamada, T.: The control of chaos: theory and applications. Prog. Theor. Phys. 69, 32 (1983)

    Article  MATH  Google Scholar 

  4. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic system. Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fotsin, H., Bowong, S., Daafouz, J.: Adaptive synchronization of two chaotic systems consisting of modified Van der Pol-Duffing and Chua oscillators. Chaos Solitons Fractals 26, 215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pisarchik, A.N., Ruiz-Oliveras, F.R.: Nonlinear Dynamics New Directions: Models and Applications. Nonlinear Systems and Complexity, vol. 12. Springer, Berlin (2014)

    Google Scholar 

  7. Zanin, M., Sevilla-Escoboza, R., Jaimes-Reátegui, R., García-Lopez, J.H., Pisarchik, A.N.: Synchronization attack of chaotic communication systems. Discontinuity Nonlinearity Complex. 2(4), 333–343 (2013)

    Article  Google Scholar 

  8. Pisarchik, A.N., Jiménez-Rodríguez, M., Jaimes-Reátegui, R.: How to resist synchronization attacks. Discontinuity Nonlinearity Complex. 4(1), 1–9 (2015)

    Article  Google Scholar 

  9. González-Miranda, J.M.: Synchronization and Control of Chaos. Imperial College Press, London (2004)

    Book  Google Scholar 

  10. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804 (1996)

    Article  MATH  Google Scholar 

  11. Liu, W., Xia, J., Qian, X., Yang, J.: Antiphase synchronization in coupled chaotic oscillators. Phys. Rev. E 73, 057203 (2006)

    Article  Google Scholar 

  12. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillator. Phys. Rev. Lett. 78, 4193 (1997)

    Article  Google Scholar 

  13. Voss, H.U.: Anticipating chaotic synchronization. Phys. Rev. E 61, 5115 (2000)

    Article  Google Scholar 

  14. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980 (1995)

    Article  Google Scholar 

  15. Pyragiené, T., Pyragas, K.: Anticipating spike synchronization in nonidentical chaotic neurons. Nonlinear Dyn. 74, 297 (2013)

    Article  MathSciNet  Google Scholar 

  16. Sausedo-Solorio, J.M., Pisarchik, A.N., Sausedo-Solorio, J.M., Pisarchik, A.N.: Phys. Lett. A 378, 2108 (2014)

    Google Scholar 

  17. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Article  Google Scholar 

  18. Zhang, X., Zou, Y., Boccaletti, S., Liu, Z.: Explosive synchronization as a process of explosive percolation in dynamical phase space. Sci. Rep. 4, 5200 (2014)

    Article  Google Scholar 

  19. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64 (2002)

    Article  Google Scholar 

  20. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)

    Article  Google Scholar 

  21. Valverde, S., Solé, R.V.: Network motifs in computational graphs: a case study in software architecture. Phys. Rev. E 72, 026107 (2005)

    Article  Google Scholar 

  22. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    Google Scholar 

  23. Pisarchik, A.N., Jaimes-Reátegui, R.: Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch. Phys. Rev. E 92, 050901(R) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Pisarchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pisarchik, A.N., García-Vellisca, M.A. (2018). From Chaos to Order in a Ring of Coupled Oscillators with Frequency Mismatch. In: Volchenkov, D., Leoncini, X. (eds) Regularity and Stochasticity of Nonlinear Dynamical Systems. Nonlinear Systems and Complexity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-58062-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58062-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58061-6

  • Online ISBN: 978-3-319-58062-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics