Skip to main content

Bifurcation Trees of Period-3 Motions to Chaos in a Time-Delayed Duffing Oscillator

  • Chapter
  • First Online:
Regularity and Stochasticity of Nonlinear Dynamical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 21))

  • 692 Accesses

Abstract

The time-delayed Duffing oscillator is extensively applied in engineering and particle physics. Determination of periodic motions in such a system is significant. Thus, here in, period motions in the time-delayed Duffing oscillator are discussed through a semi-analytical method. The semi-analytical method is based on the implicit mappings constructed by discretization of the corresponding differential equation. Complex period-3 motions are predicted, and the corresponding stability and bifurcation analysis are completed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lagrange, J.L.: Mecanique Analytique, vol. 2 (1788) (edition Albert Balnchard: Paris 1965)

    Google Scholar 

  2. Poincare, H.: Methodes Nouvelles de la Mecanique Celeste, vol. 3. Gauthier-Villars, Paris (1899)

    MATH  Google Scholar 

  3. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710, 754–762 (1920)

    Google Scholar 

  4. Fatou, P.: Sur le mouvement d’un systeme soumis à des forces a courte periode. Bull. Soc. Math. 56, 98–139 (1928)

    MathSciNet  MATH  Google Scholar 

  5. Krylov, N.M., Bogolyubov, N.N.: Methodes approchees de la mecanique non-lineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant, Academie des Sciences d’Ukraine:Kiev (1935) (in French)

    Google Scholar 

  6. Luo, A.C.J.: Continuous Dynamical Systems. HEP/L&H Scientific, Beijing/Glen Carbon (2012)

    MATH  Google Scholar 

  7. Luo, A.C.J., Huang, J.Z.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control 18, 1661–1871 (2012)

    Article  MathSciNet  Google Scholar 

  8. Luo, A.C.J., Huang, J.Z.: Analytical dynamics of period-m flows and chaos in nonlinear systems. Int. J. Bifurc. Chaos 22 (2012). Article No. 1250093 (29 p)

    Google Scholar 

  9. Luo, A.C.J., Huang, J.Z.: Analytical routines of period-1 motions to chaos in a periodically forced Duffing oscillator with twin-well potential. J. Appl. Nonlinear Dyn. 1, 73–108 (2012)

    Article  MATH  Google Scholar 

  10. Luo, A.C.J., Huang, J.Z.: Unstable and stable period-m motions in a twin-well potential Duffing oscillator. Discont. Nonlinearity Complex. 1, 113–145 (2012)

    Article  MATH  Google Scholar 

  11. Hu, H.Y., Dowell, E.H., Virgin, L.N.: Resonance of harmonically forced Duffing oscillator with time-delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998)

    Article  MATH  Google Scholar 

  12. Hu, H.Y., Wang, Z.H.: Dynmaics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2002)

    Book  Google Scholar 

  13. MacDonald, N.: Harmonic balance in delay-differential equations. J. Sounds Vib. 186(4), 649–656 (1995)

    Google Scholar 

  14. Leung, A.Y.T., Guo, Z.: Bifurcation of the periodic motions in nonlinear delayed oscillators. J. Vib. Control 20, 501–517 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, L., Kalmar-Nagy, T.: High-dimensional harmonic balance analysis for second-order delay-differential equations. J. Vib. Control 16(7–8), 1189–1208 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Luo, A.C.J.: Analytical solutions of periodic motions in dynamical systems with/without time-delay. Int. J. Dyn. Control 1, 330–359 (2013)

    Article  Google Scholar 

  17. Luo, A.C.J., Jin, H.X.: Bifurcation trees of period-m motion to chaos in a time-delayed, quadratic nonlinear oscillator under a periodic excitation. Discont. Nonlinearity Complex. 3, 87–107 (2014)

    Article  MATH  Google Scholar 

  18. Luo, A.C.J., Jin, H.X.: Complex period-1 motions of a periodically forced Duffing oscillator with a time-delay feedback. Int. J. Dyn. Control (2014, in press)

    Google Scholar 

  19. Luo, A.C.J., Jin, H.X.: Period-m motions to chaos in a periodically forced Duffing oscillator with a time-delay feedback. Int. J. Bifurc. Chaos 24(10) (2014). Article no: 1450126 (20 p)

    Google Scholar 

  20. Insperger, T., Stepan, G.: Semi-discretization of delayed dynamical systems. Int. J. Numer. Methods Eng. 55(5), 503–518 (2002)

    Article  MATH  Google Scholar 

  21. Insperger, T., Stepan, G.: Semi-Discretization of Time-Delay Systems. Springer, New York (2002)

    MATH  Google Scholar 

  22. Khasawneh, F.A., Mann, B.P.: A spectral element approach for the stability of delay system. Int. J. Numer. Methods Eng. 87, 566–592 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lehotzky, D., Insperger, T., Stepan, G.: Extension of the spectral element method for stability analysis of time-periodic delay-diferential equations with multiple and distributed delays. Commun. Nonlinear Sci. Numer. Simul. 35, 177–189 (2016)

    Article  MathSciNet  Google Scholar 

  24. Luo, A.C.J.: Periodic flows in nonlinear dynamical systems based on discrete implicit maps. Int. J. Bifurc. Chaos 25(3) (2015). Article No: 1550044 (62 p)

    Google Scholar 

  25. Luo, A.C.J.: Discretization and Implicit Mapping Dynamics. HEP/Springer, Beijing/Dordrecht (2015)

    Book  MATH  Google Scholar 

  26. Luo, A.C.J., Guo, Y.: A semi-analytical prediction of periodic motions in Duffing oscillator through mapping structures. Discont. Nonlinearity Complex. 4(2), 121–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luo, A.C.J., Xing, S.Y.: Symmetric and asymmetric period-1 motions in a periodically forced, time-delayed, hardening Duffing oscillator. Nonlinear Dyn. 85(2), 1141–1166 (2016)

    Google Scholar 

  28. Luo, A.C.J., Xing, S.Y.: Multiple bifurcation trees of period-1 motions to chaos in a periodically forced, time-delayed, hardening Duffing oscillator. Chaos Soliton Fractals. 89, 405–434 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Luo, A.C.J., Xing, S. (2018). Bifurcation Trees of Period-3 Motions to Chaos in a Time-Delayed Duffing Oscillator . In: Volchenkov, D., Leoncini, X. (eds) Regularity and Stochasticity of Nonlinear Dynamical Systems. Nonlinear Systems and Complexity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-58062-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58062-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58061-6

  • Online ISBN: 978-3-319-58062-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics