Skip to main content

Early Lung Cancer: Methods for Detection

  • Chapter
  • First Online:
Interventions in Pulmonary Medicine

Abstract

Although the incidence and death due to lung cancer continue to decline in recent years, lung cancer is still the leading cause of death in North America. For improving lung cancer survival, screening and early detection will be one of the most important clinical practices. Airway assessment techniques beyond white light observation have been accepted in current clinical environment for early endobronchial malignancy detection and surveillance. Autofluorescence bronchoscopy (AFB), narrow band imaging (NBI), and high magnification bronchovideoscope are some of the advanced bronchoscopic imaging techniques capable of detecting preinvasive lesions currently available in clinical practice. These technologies allow to differentiate between pre- and malignant lesions utilizing differential patterns of normal and pathological tissue autofluorescence or vasculature. Endocytoscopy, confocal miniprobe, and Raman spectroscopy are still investigational, but these novel technologies will open a new avenue for more precise evaluation and higher diagnostic yield of very early detection of lung cancer.

The technology which received the most attention in interventional pulmonology over the past two decades was the development of endobronchial ultrasound. Endobronchial ultrasound allows advanced assessment of the airway as well as the mediastinum and peripheral lung nodules. The radial probe endobronchial ultrasound (EBUS) allows a more precise evaluation of newly detected preinvasive lesions within the airway. Optical coherence tomography is another new technology for more precise observation of endobronchial structures. This chapter will review the advanced bronchoscopic imaging technologies for detection of early lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2013, National Cancer Institute: Bethesda. http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. Accessed 20 Aug 2016.

  2. The National Lung Screening Trial Research Team. Reduced lung cancer mortality with low-dose computed tomographic screening. NEJM. 2011;365:395–409.

    Article  PubMed Central  Google Scholar 

  3. Yasufuku K. Early diagnosis of lung cancer. In: Mehta A, editor. Clinics in chest medicine. Interventional pulmonology. Elsevier: vol. 31(1);2010. p. 40–7.

    Google Scholar 

  4. Nakajima T, Yasufuku K. Early lung cancer: methods for detection. Clin Chest Med. 2013;34:373–83.

    Article  PubMed  Google Scholar 

  5. Niklinski J, Niklinski W, Chyczewskis L, et al. Molecular genetic abnormalities in premalignant lung lesions: biological and clinical implications. Eur J Cancer Prev. 2001;10:213–26.

    Article  CAS  PubMed  Google Scholar 

  6. Thiberville L, Payne P, Vielkinds J, et al. Evidence of cumulative gene losses with progression of the premalignant epithelial lesions to carcinoma of the bronchus. Cancer Res. 1995;155:5133–9.

    Google Scholar 

  7. Alaa M, Shibuya K, Fujiwara T, et al. Risk of lung cancer in patients with preinvasive bronchial lesions followed by autofluorescence bronchoscopy and chest computed tomography. Lung Cancer. 2011;72:303–8.

    Article  PubMed  Google Scholar 

  8. Venmans BJ, van Boxem TJ, Smith EF, et al. Outcome of bronchial carcinoma in situ. Chest. 2000;117:1572–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda N, Hayashi A, Iwasaki K, et al. Comprehensive diagnostic bronchoscopy of central type early stage lung cancer. Lung Cancer. 2007;56:295–302.

    Article  PubMed  Google Scholar 

  10. Lam S, Kennedy T, Unger M, et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest. 1998;113:696–702.

    Article  CAS  PubMed  Google Scholar 

  11. van der Heijden EH, Hoefsloot W, van Hees HW, et al. High definition bronchoscopy: a randomized exploratory study of diagnostic value compared to standard white light bronchoscopy and autofluorescence bronchoscopy. Respir Res. 2015;16:33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. ASGE Technology Committee. Confocal laser endomicroscopy. Gastrointest Endosc. 2014;80:928–38.

    Article  Google Scholar 

  13. Shibuya K, Fujiwara T, Yasufuku K, et al. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system. Lung Cancer. 2011;72:184–90.

    Article  PubMed  Google Scholar 

  14. Keith RL, Miller YE, Gemmill RM, et al. Angiogenic squamous dysplasia in bronchi of individuals at high risk for lung cancer. Clin Cancer Res. 2000;6:1616–25.

    CAS  PubMed  Google Scholar 

  15. Interventional bronchoscopy. Progress in respiratory research, vol. 30. Cham: Springer Kaarger; 2000. p. 243.

    Google Scholar 

  16. Colt H, Murgu S. Interventional bronchoscopy form bench to bedside: new techniques for early lung cancer detection. Clin Chest Med. 2010;31(1):29–37.

    Article  PubMed  Google Scholar 

  17. He Q, Wang Q, Wu Q, et al. Value of autofluorescence imaging videobronchoscopy in detecting lung cancers and precancerous lesions: a review. Respir Care. 2013;58:2150–9.

    Article  PubMed  Google Scholar 

  18. Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9:568–77.

    Article  PubMed  Google Scholar 

  19. Tajiri H, Niwa H. Proposal for a consensus terminology in endoscopy: how should different endoscopic imaging techniques be grouped and defined? Endoscopy. 2008;40:775–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kaltenbach T, Sano Y, Friedland S, Soetikno R, American Gastroenterological Association. American Gastroenterological Association (AGA) institute technology assessment on image-enhanced endoscopy. Gastroenterology. 2008;134(3):27–40.

    Google Scholar 

  21. Hirsch FR, Franklin WA, Gazdar AF, Bunn PA Jr. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 2001;7:5–22.

    CAS  PubMed  Google Scholar 

  22. Shibuya K, Nakajima T, Fujiwara T, et al. Narrow band imaging with high-resolution bronchovideoscopy: a new approach for visualizing angiogenesis in squamous cell carcinoma of the lung. Lung Cancer. 2010;69:194–202.

    Article  PubMed  Google Scholar 

  23. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  CAS  PubMed  Google Scholar 

  24. Hanahan D, Inoue H, Nagai K, Kawano T, et al. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  25. Shibuya K, Hoshino H, Chiyo M, et al. Subepithelial vascular patterns in bronchial dysplasias using a high magnification bronchovideoscope. Thorax. 2002;57:902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanaka H, Yamada G, Sakai T, et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med. 2003;168:1495–9.

    Article  PubMed  Google Scholar 

  27. Hürter T, Hanrath P. Endobronchial sonography: feasibility and preliminary results. Thorax. 1992;47:565–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yasufuku K. Current clinical applications of endobronchial ultrasound. Expert Rev Respir Med. 2010;4:491–8.

    Article  PubMed  Google Scholar 

  29. Kurimoto N, Murayama M, Yoshioka S, Nishisaka T. Assessment of usefulness of endobronchial ultrasonography in determination of depth of tracheobronchial tumor invasion. Chest. 1999;115:1500–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ohtani K, Lee AM, Lam S. Frontiers in bronchoscopic imaging. Respirology. 2012;17:261–9.

    Article  PubMed  Google Scholar 

  31. Lam S, Standish B, Baldwin C, et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin Cancer Res. 2008;14:2006–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Michel RG, Kinasewitz GT, Fung KM, et al. Optical coherence tomography as an adjunct to flexible bronchoscopy in the diagnosis of lung cancer: a pilot study. Chest. 2010;138:984–8.

    Article  PubMed  Google Scholar 

  33. Wisnivesky JP, Yung RC, Mathur PN, et al. Diagnosis and treatment of bronchial intraepithelial neoplasia and early lung cancer of the central airways: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e263S–77S.

    Article  PubMed  Google Scholar 

  34. Weigel TL, Yousem S, Dacic S, et al. Fluorescence bronchoscopic surveillance after curative surgical resection for non-small-cell lung cancer. Ann Surg Oncol. 2000;7:176–80.

    Article  CAS  PubMed  Google Scholar 

  35. Sutedja TG, Codrington H, Risse EK, et al. Autofluorescence bronchoscopy improves staging of radiographically occult lung cancer and has an impact on therapeutic strategy. Chest. 2001;120:1327–32.

    Article  CAS  PubMed  Google Scholar 

  36. Zaric B, Becker HD, Perin B, et al. Autofluorescence imaging videobronchoscopy improves assessment of tumor margins and affects therapeutic strategy in central lung cancer. Jpn J Clin Oncol. 2010;40:139–45.

    Article  PubMed  Google Scholar 

  37. Spiro SG, Hackshaw A, LungSEARCH Collaborative Group. Research in progress--LungSEARCH: a randomised controlled trial of surveillance for the early detection of lung cancer in a high-risk group. Thorax. 2016;71:91–3.

    Article  PubMed  Google Scholar 

  38. Risse EK, Voojis GP, van’t Hoff MA. Diagnostic significance of ‘severe dysplasia’ in sputum cytology. Acta Cytol. 1988;32:629–34.

    CAS  PubMed  Google Scholar 

  39. Band PR, Feldstein M, Saccomanno G. Reversibility of bronchial marked atypia: implication for chemoprevention. Cancer Detect Prev. 1986;9:157–60.

    CAS  PubMed  Google Scholar 

  40. Sawyer RW, Hammond WG, Teplitz RL, et al. Regression of bronchial epithelial cancer in hamsters. Ann Thorac Surg. 1993;56:74–8.

    Article  CAS  PubMed  Google Scholar 

  41. Breuer RH, Pasic A, Smith EF, et al. The natural course of preneoplastic lesions in bronchial epithelium. Clin Cancer Res. 2005;11:537–43.

    CAS  PubMed  Google Scholar 

  42. Vincent B, Fraig M, Silvestri G. A Pilot study of narrow-band imaging compared to white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease. Chest. 2007;131:1794–9.

    Article  PubMed  Google Scholar 

  43. Tremblay A, Taghizadeh N, McWilliams AM, et al. Low prevalence of high grade lesions detected with autofluorescence bronchoscopy in the setting of lung cancer screening in the Pan-Canadian Lung Cancer Screening Study. Chest. 2016;150(5):1015–22.

    Article  PubMed  Google Scholar 

  44. Van Rens M, Schramel F, Elbers J, et al. The clinical value of lung imaging autofluorescence endoscope for detecting synchronous lung cancer. Lung Cancer. 2001;32:13–8.

    Article  PubMed  Google Scholar 

  45. Sun J, Garfield D, Lam B. The role of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in diagnosis of intraepithelial neoplasia and invasive lung cancer. J Thorac Oncol. 2011;6:1336–44.

    Article  PubMed  Google Scholar 

  46. Chiyo M, Shibuya K, Hoshino H, et al. Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system. Lung Cancer. 2005;48:307–13.

    Article  PubMed  Google Scholar 

  47. Thiberville L, Moreno-Swirc S, Vercauteren T, et al. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med. 2007;175:22–31.

    Article  PubMed  Google Scholar 

  48. Thiberville L, Salaün M, Lachkar S, et al. Confocal fluorescence endomicroscopy of the human airways. Proc Am Thorac Soc. 2009;6:444–9.

    Article  PubMed  Google Scholar 

  49. Wellikoff AS, Holladay RC, Downie GH, et al. Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: a move toward optical biopsy. Respirology. 2015;20:967–74.

    Article  PubMed  Google Scholar 

  50. Neumann H, Fuchs FS, Vieth M, et al. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther. 2011;33:1183–93.

    Article  CAS  PubMed  Google Scholar 

  51. Neumann H, Vieth M, Neurath MF, et al. In vivo diagnosis of small-cell lung cancer by endocytoscopy. J Clin Oncol. 2011;29:e131–2.

    Article  PubMed  Google Scholar 

  52. Short MA, Lam S, AM MW, et al. Using laser Raman spectroscopy to reduce false positive of autofluorescence bronchoscopy. A pilot study. J Thorac Oncol. 2011;6:1206–14.

    Article  PubMed  Google Scholar 

  53. Tu AT. Raman spectroscopy in biology: principles and applications. New York: Wiley; 1982.

    Google Scholar 

  54. McGregor HC, Short MA, McWilliams A, et al. Real-time endoscopic Raman spectroscopy for in vivo early lung cancer detection. J Biophotonics. 2017;10(1):98–110.

    Article  CAS  PubMed  Google Scholar 

  55. Pahlevaninezhad H, Lee AM, Lam S, et al. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections. J Biomed Opt. 2014;19:36022.

    Article  PubMed  Google Scholar 

  56. Pahlevaninezhad H, Lee AM, Ritchie A, et al. Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature. Biomed Opt Express. 2015;6:4191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhai J. Multitarget fluorescence in situ hybridization assay for the detection of lung cancer in bronchial cytology specimens: a comparison with routine cytology. Diagn Cytopathol. 2015;43:819–24.

    Article  PubMed  Google Scholar 

  58. Liu YZ, Jiang YY, Wang BS, et al. A panel of protein markers for the early detection of lung cancer with bronchial brushing specimens. Cancer Cytopathol. 2014;122:833–41.

    Article  CAS  PubMed  Google Scholar 

  59. Silvestri GA, Vachani A, Whitney D, et al. A bronchial genomic classifier for the diagnostic evaluation of lung cancer. N Engl J Med. 2015;373:243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Wang Q, Feng J, et al. Comparison of autofluorescence imaging bronchoscopy and white light bronchoscopy for detection of lung cancers and precancerous lesions. Patient Prefer Adherence. 2013;7:621–31.

    PubMed  PubMed Central  Google Scholar 

  61. Furukawa K, Ikeda N, Miura T, et al. Is autofluorescence bronchoscopy needed to diagnose early bronchogenic carcinoma? Pro: autofluorescence bronchoscopy. J Bronchol Interv Pulmonol. 2003;10:64–9.

    Google Scholar 

  62. Pierard P, Vermylen P, Bosschaerts T, et al. Synchronous roentgenographically occult lung carcinoma in patients with resectable primary lung cancer. Chest. 2000;7:176–80.

    Google Scholar 

  63. Herth FJ, Eberhardt R, Anantham D, et al. Narrow-band imaging bronchoscopy increases the specificity of bronchoscopic early lung cancer detection. J Thorac Oncol. 2009;4:1060–5.

    Article  PubMed  Google Scholar 

  64. Iftikhar IH, Musani AI. Narrow-band imaging bronchoscopy in the detection of premalignant airway lesions: a meta-analysis of diagnostic test accuracy. Ther Adv Respir Dis. 2015;9:207–16.

    Article  PubMed  Google Scholar 

  65. Zaric B, Perin B, Becker HD, et al. Combination of narrow band imaging (NBI) and autofluorescence imaging (AFI) videobronchoscopy in endoscopic assessment of lung cancer extension. Med Oncol. 2012;29:1638–42.

    Article  PubMed  Google Scholar 

  66. Kumaji Y, Inoue H, Nagai H, et al. Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma. Endoscopy. 2002;34:369–75.

    Article  Google Scholar 

  67. Shibuya K, Nakajima T, Yasufuku K, et al. Narrow band imaging with high resolution bronchovideoscopy: a new approach to visualize angiogenesis in squamous cell carcinoma of the lung. Eur Respir J. 2006;28(Suppl 50):601s.

    Google Scholar 

  68. Tanaka F, Muro K, Yamasaki S, et al. Evaluation of tracheo-bronchial wall invasion using transbronchial ultrasonography (TBUS). Eur J Cardiothorac Surg. 2000;17:570–4.

    Article  CAS  PubMed  Google Scholar 

  69. Herth FJ, Becker HD. EBUS for early lung cancer detection. J Bronchol. 2003;10:249.

    Article  Google Scholar 

  70. Miyazu Y, Miyazawa T, Kurimoto N, et al. Endobronchial ultrasonography in the assessment of centrally located early-stage lung cancer before photodynamic therapy. Am J Respir Crit Care Med. 2002;165:832–7.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

T.N. received honoraria and lecture fees from Olympus Corporation, and K.Y. received unrestricted educational and research grant from Olympus Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yasufuku MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nakajima, T., Yasufuku, K. (2018). Early Lung Cancer: Methods for Detection. In: Díaz-Jimenez, J., Rodriguez, A. (eds) Interventions in Pulmonary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-58036-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58036-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58035-7

  • Online ISBN: 978-3-319-58036-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics