Skip to main content

Geometric and Spectral Consequences of Curvature Bounds on Tessellations

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2184))

Abstract

This chapter focuses on geometric and spectral consequences of curvature bounds. Several of the results presented here have analogues in Riemannian geometry but in some cases one can go even beyond the Riemannian results and there also striking differences. The geometric setting of this chapter are tessellations and the curvature notion arises as a combinatorial quantity which can be interpreted as an angular defect and goes back to Descartes. First, we study the geometric consequences of curvature bounds. Here, a discrete Gauss–Bonnet theorem provides a starting point from which various directions shall be explored. These directions include analogues of a theorem of Myers, a Hadamard–Cartan theorem, volume growth bounds, strong isoperimetric inequalities and Gromov hyperbolicity. Secondly, we investigate spectral properties of the Laplacian which are often consequences of the geometric properties established before. For example we present analogues to a theorem of McKean about the spectral gap, a theorem by Donnelly-Li about discrete spectrum, we discuss the phenomena of compactly supported eigenfunctions and briefly elaborate on stability of the 2 spectrum for the Laplacian on  p.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aizenman, M., Warzel, S.: The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2007) (2006). doi:10.1007/s11040-007-9018-3. http://dx.doi.org/10.1007/s11040-007-9018-3

  2. Bartholdi, L., Ceccherini-Silberstein, T.G.: Salem numbers and growth series of some hyperbolic graphs. Geom. Dedicata 90, 107–114 (2002). http://dx.doi.org/10.1023/A:1014902918849

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, F., Hua, B., Keller, M.: On the l p spectrum of Laplacians on graphs. Adv. Math. 248, 717–735 (2013). http://dx.doi.org/10.1016/j.aim.2013.05.029

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, F., Keller, M., Wojciechowski, R.K.: Cheeger inequalities for unbounded graph Laplacians. J. Eur. Math. Soc. (JEMS) 17(2), 259–271 (2015). http://dx.doi.org/10.4171/JEMS/503

  5. Baues, O., Peyerimhoff, N.: Curvature and geometry of tessellating plane graphs. Discrete Comput. Geom. 25(1), 141–159 (2001). http://dx.doi.org/10.1007/s004540010076

    Article  MathSciNet  MATH  Google Scholar 

  6. Baues, O., Peyerimhoff, N.: Geodesics in non-positively curved plane tessellations. Adv. Geom. 6(2), 243–263 (2006). http://dx.doi.org/10.1515/ADVGEOM.2006.014

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnefont, M., Golénia, S., Keller, M.: Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs (2014). Preprint

    Google Scholar 

  8. Bonnefont, M., Golénia, S., Keller, M.: Eigenvalue asymptotics for Schrödinger operators on sparse graphs. Ann. Inst. Fourier (Grenoble) 65(5), 1969–1998 (2015). http://aif.cedram.org/item?id=AIF_2015__65_5_1969_0

  9. Breuer, J., Keller, M.: Spectral analysis of certain spherically homogeneous graphs. Oper. Matrices 7(4), 825–847 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byung-Geun, O.: On the number of vertices of positively curved planar graphs. Discret. Math. 340(6), 1300–1310 (2017). doi:10.1016/j.disc.2017.01.025, ISSN:0012-365X, http://dx.doi.org/10.1016/j.disc.2017.01.025

  11. Cannon, J.W., Wagreich, P.: Growth functions of surface groups. Math. Ann. 293(2), 239–257 (1992). http://dx.doi.org/10.1007/BF01444714

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, J.: Cheeger isoperimetric constants of Gromov-hyperbolic spaces with quasi-poles. Commun. Contemp. Math. 2(4), 511–533 (2000). http://dx.doi.org/10.1142/S0219199700000232

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, B.: The Gauss-Bonnet formula of polytopal manifolds and the characterization of embedded graphs with nonnegative curvature. Proc. Am. Math. Soc. 137(5), 1601–1611 (2009). http://dx.doi.org/10.1090/S0002-9939-08-09739-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, B., Chen, G.: Gauss-Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces. Graphs Combinatorics 24(3), 159–183 (2008). http://dx.doi.org/10.1007/s00373-008-0782-z

    Article  MathSciNet  MATH  Google Scholar 

  15. DeVos, M., Mohar, B.: An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture. Trans. Am. Math. Soc. 359(7), 3287–3300 (electronic) (2007). doi:http://dx.doi.org/10.1090/S0002-9947-07-04125-6

  16. Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984). http://dx.doi.org/10.2307/1999107

    Article  MathSciNet  MATH  Google Scholar 

  17. Dodziuk, J., Kendall, W.S.: Combinatorial Laplacians and isoperimetric inequality. In: From Local Times to Global Geometry, Control and Physics (Coventry, 1984/85). Pitman Research Notes in Mathematics Series, vol. 150, pp. 68–74. Longman Sci. Tech., Harlow (1986)

    Google Scholar 

  18. Dodziuk, J., Karp, L.: Spectral and function theory for combinatorial Laplacians. In: Geometry of Random Motion (Ithaca, N.Y., 1987). Contemporary Mathematics, vol. 73, pp. 25–40. American Mathematical Society, Providence (1988). http://dx.doi.org/10.1090/conm/073/954626

  19. Dodziuk, J., Linnell, P., Mathai, V., Schick, T., Yates, S.: Approximating L 2-invariants and the Atiyah conjecture. Commun. Pure Appl. Math. 56(7), 839–873 (2003). http://dx.doi.org/10.1002/cpa.10076. Dedicated to the memory of Jürgen K. Moser

  20. Donnelly, H., Li, P.: Pure point spectrum and negative curvature for noncompact manifolds. Duke Math. J. 46(3), 497–503 (1979). http://projecteuclid.org/euclid.dmj/1077313570

    Article  MathSciNet  MATH  Google Scholar 

  21. Federico, P.J.: Descartes on polyhedra. Sources in the History of Mathematics and Physical Sciences, vol. 4. Springer, New York/Berlin (1982). A study of the ıt De solidorum elementis

    Google Scholar 

  22. Floyd, W.J., Plotnick, S.P.: Growth functions on Fuchsian groups and the Euler characteristic. Invent. Math. 88(1), 1–29 (1987). http://dx.doi.org/10.1007/BF01405088

    Article  MathSciNet  MATH  Google Scholar 

  23. Fujiwara, K.: Growth and the spectrum of the Laplacian of an infinite graph. Tohoku Math. J. (2) 48(2), 293–302 (1996). http://dx.doi.org/10.2748/tmj/1178225382

  24. Fujiwara, K.: The Laplacian on rapidly branching trees. Duke Math. J. 83(1), 191–202 (1996). http://dx.doi.org/10.1215/S0012-7094-96-08308-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987). http://dx.doi.org/10.1007/978-1-4613-9586-7_3

  26. Häggström, O., Jonasson, J., Lyons, R.: Explicit isoperimetric constants and phase transitions in the random-cluster model. Ann. Probab. 30(1), 443–473 (2002). http://dx.doi.org/10.1214/aop/1020107775

    Article  MathSciNet  MATH  Google Scholar 

  27. Hempel, R., Voigt, J.: The spectrum of a Schrödinger operator in L p (R ν) is p-independent. Commun. Math. Phys. 104(2), 243–250 (1986). URL http://projecteuclid.org/euclid.cmp/1104115001

  28. Higuchi, Y.: Combinatorial curvature for planar graphs. J. Graph Theory 38(4), 220–229 (2001). http://dx.doi.org/10.1002/jgt.10004

    Article  MathSciNet  MATH  Google Scholar 

  29. Higuchi, Y., Shirai, T.: Isoperimetric constants of (d, f)-regular planar graphs. Interdiscip. Inform. Sci. 9(2), 221–228 (2003). http://dx.doi.org/10.4036/iis.2003.221

  30. Hua, B., Jost, J., Liu, S.: Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. J. Reine Angew. Math. 700, 1–36 (2015). http://dx.doi.org/10.1515/crelle-2013-0015

    Article  MathSciNet  MATH  Google Scholar 

  31. Ishida, M.: Pseudo-curvature of a graph. Lecture at ‘Workshop on topological graph theory’, Yokohama National University (1990)

    Google Scholar 

  32. Keller, M.: The essential spectrum of the Laplacian on rapidly branching tessellations. Math. Ann. 346(1), 51–66 (2010). http://dx.doi.org/10.1007/s00208-009-0384-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Keller, M.: Curvature, geometry and spectral properties of planar graphs. Discrete Comput. Geom. 46(3), 500–525 (2011). http://dx.doi.org/10.1007/s00454-011-9333-0

    Article  MathSciNet  MATH  Google Scholar 

  34. Keller, M.: Intrinsic metrics on graphs – A survey. In: Mugnolo, D. (ed.) Mathematical Technology of Networks (Proc. Bielefeld 2013). Proceedings in Mathematics and Statistics. Springer, New York (2014)

    Google Scholar 

  35. Keller, M., Peyerimhoff, N.: Cheeger constants, growth and spectrum of locally tessellating planar graphs. Math. Z. 268(3–4), 871–886 (2011). http://dx.doi.org/10.1007/s00209-010-0699-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Keller, M., Peyerimhoff, N., Pogorzelski, F.: Sectional curvature of polygonal complexes with planar substructures. Adv. Math. 307, 1070–1107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Keller, M., Lenz, D.: Agmon type estimates and purely discrete spectrum for graphs. Preprint

    Google Scholar 

  38. Keller, M., Liu, S., Peyerimhoff, N.: A note on eigenvalue bounds for non-compact manifolds, Preprint 2017, arXiv:1706.02437

    Google Scholar 

  39. Klassert, S., Lenz, D., Stollmann, P.: Discontinuities of the integrated density of states for random operators on Delone sets. Commun. Math. Phys. 241(2–3), 235–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Klassert, S., Lenz, D., Peyerimhoff, N., Stollmann, P.: Elliptic operators on planar graphs: unique continuation for eigenfunctions and nonpositive curvature. Proc. Am. Math. Soc. 134(5), 1549–1559 (2006). http://dx.doi.org/10.1090/S0002-9939-05-08103-7

    Article  MathSciNet  MATH  Google Scholar 

  41. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009). With a chapter by James G. Propp and David B. Wilson

    Google Scholar 

  42. McKean, H.P.: An upper bound to the spectrum of Δ on a manifold of negative curvature. J. Differ. Geom. 4, 359–366 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mohar, B.: Isoperimetric inequalities, growth, and the spectrum of graphs. Linear Algebra Appl. 103, 119–131 (1988). http://dx.doi.org/10.1016/0024-3795(88)90224-8

  44. Mohar, B.: Some relations between analytic and geometric properties of infinite graphs. Discrete Math. 95(1–3), 193–219 (1991). http://dx.doi.org/10.1016/0012-365X(91)90337-2. Directions in infinite graph theory and combinatorics (Cambridge, 1989)

  45. Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1(3), x+121 (2006)

    Google Scholar 

  46. Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nicholson, R., Sneddon, J.: New graphs with thinly spread positive combinatorial curvature. N. Z. J. Math. 41, 39–43 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Oh, B.G.: Duality properties of strong isoperimetric inequalities on a planar graph and combinatorial curvatures. Discrete Comput. Geom. 51(4), 859–884 (2014). http://dx.doi.org/10.1007/s00454-014-9592-7

    Article  MathSciNet  MATH  Google Scholar 

  49. Ohno, Y., Urakawa, H.: On the first eigenvalue of the combinatorial Laplacian for a graph. Interdiscip. Inform. Sci. 1(1), 33–46 (1994). http://dx.doi.org/10.4036/iis.1994.33

    MathSciNet  MATH  Google Scholar 

  50. Simon, B.: Brownian motion, L p properties of Schrödinger operators and the localization of binding. J. Funct. Anal. 35(2), 215–229 (1980). http://dx.doi.org/10.1016/0022-1236(80)90006-3

  51. Stone, D.A.: A combinatorial analogue of a theorem of Myers. Ill. J. Math. 20(1), 12–21 (1976)

    MathSciNet  MATH  Google Scholar 

  52. Stone, D.A.: Correction to my paper: A combinatorial analogue of a theorem of Myers (Ill. J. Math. 20(1), 12–21 (1976)). Ill. J. Math. 20(3), 551–554 (1976)

    Google Scholar 

  53. Sturm, K.T.: On the L p-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal. 118(2), 442–453 (1993). http://dx.doi.org/10.1006/jfan.1993.1150

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun, L., Yu, X.: Positively curved cubic plane graphs are finite. J. Graph Theory 47(4), 241–274 (2004). http://dx.doi.org/10.1002/jgt.20026

    Article  MathSciNet  MATH  Google Scholar 

  55. Weidmann, J.: Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics, vol. 68. Springer, New York/Berlin (1980). Translated from the German by Joseph Szücs

    Google Scholar 

  56. Wise, D.T.: Sectional curvature, compact cores, and local quasiconvexity. Geom. Funct. Anal. 14(2), 433–468 (2004). http://dx.doi.org/10.1007/s00039-004-0463-x

    Article  MathSciNet  MATH  Google Scholar 

  57. Woess, W.: A note on tilings and strong isoperimetric inequality. Math. Proc. Camb. Philos. Soc. 124(3), 385–393 (1998). http://dx.doi.org/10.1017/S0305004197002429

    Article  MathSciNet  MATH  Google Scholar 

  58. Wojciechowski, R.K.: Stochastic completeness of graphs. Thesis (Ph.D.)–City University of New York. ProQuest LLC, Ann Arbor, MI (2008). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3310649.

    Google Scholar 

  59. Zhang, L.: A result on combinatorial curvature for embedded graphs on a surface. Discrete Math. 308(24), 6588–6595 (2008). http://dx.doi.org/10.1016/j.disc.2007.11.007

    Article  MathSciNet  MATH  Google Scholar 

  60. Żuk, A.: On the norms of the random walks on planar graphs. Ann. Inst. Fourier (Grenoble) 47(5), 1463–1490 (1997). http://www.numdam.org/item?id=AIF_1997__47_5_1463_0

Download references

Acknowledgements

MK enjoyed the hospitality of C.I.R.M. and acknowledges the financial support of the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Keller, M. (2017). Geometric and Spectral Consequences of Curvature Bounds on Tessellations. In: Najman, L., Romon, P. (eds) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, vol 2184. Springer, Cham. https://doi.org/10.1007/978-3-319-58002-9_6

Download citation

Publish with us

Policies and ethics