Distances Between Datasets

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2184)

Abstract

We overview the construction and quantitative aspects of the Gromov–Hausdorff and Gromov–Wasserstein distances.

References

  1. 1.
    Boutin, M., Kemper, G.: On reconstructing n-point configurations from the distribution of distances or areas. Adv. Appl. Math. 32(4), 709–735 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brinkman, D., Olver, P.J.: Invariant histograms. Am. Math. Mon. 119(1), 4–24 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Society, Providence (2001)MATHGoogle Scholar
  5. 5.
    Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26(2), 107–135 (1998)CrossRefGoogle Scholar
  6. 6.
    Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)Google Scholar
  7. 7.
    Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, 3rd edn. Modern Birkhäuser Classics. Birkhäuser, Boston (2007).MATHGoogle Scholar
  8. 8.
    Kalton, N.J., Ostrovskii, M.I.: Distances between Banach spaces. Forum Math. 11(1), 17–48 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mémoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Proceedings of the Point Based Graphics. Prague, Czech Republic (2007)Google Scholar
  10. 10.
    Mémoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. pp. 1–8. IEEE, New York (2008)Google Scholar
  11. 11.
    Mémoli, F.: Gromov-Hausdorff distances and the metric approach to object matching. Found. Comput. Math. 11(4), 417–487 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mémoli, F.: A spectral notion of Gromov–Wasserstein distance and related methods. Appl. Comput. Harmon. Anal. 30(3), 363–401 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mémoli, F.: Some properties of Gromov–Hausdorff distances. Discrete Comput. Geom. 48(2), 416–440 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mémoli, F., Sapiro, G.: Comparing point clouds. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 32–40. ACM, New York (2004)Google Scholar
  15. 15.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1(1), 3–68 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pardalos, P.M., Wolkowicz, H., et al.: Quadratic Assignment and Related Problems: DIMACS Workshop, May 20–21, 1993, vol. 16. American Mathematical Society, Providence (1994)MATHGoogle Scholar
  19. 19.
    Petersen, P.: Gromov-Hausdorff convergence of metric spaces. In: Differential geometry: Riemannian geometry, Proceedings of the Symposium in Pure Mathematics, 8–18 July 1990, vol. 54, pp. 489–504. American Mathematical Society, Los Angeles, US (1993).Google Scholar
  20. 20.
    Sakai, T.: Riemannian geometry. Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)Google Scholar
  21. 21.
    Sturm, K.T.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177 (2006). doi:10.1007/s11511-006-0003-7. http://dx.doi.org/10.1007/s11511-006-0003-7 MathSciNetMATHGoogle Scholar
  22. 22.
    Sturm, K.T.: The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces. arXiv preprint arXiv:1208.0434 (2012)Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations