Advertisement

The Geometric Meaning of Curvature: Local and Nonlocal Aspects of Ricci Curvature

  • Frank Bauer
  • Bobo Hua
  • Jürgen Jost
  • Shiping Liu
  • Guofang Wang
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2184)

Abstract

Curvature is a concept originally developed in differential and Riemannian geometry. There are various established notions of curvature, in particular sectional and Ricci curvature. An important theme in Riemannian geometry has been to explore the geometric and topological consequences of bounds on those curvatures, like divergence or convergence of geodesics, convexity properties of distance functions, growth of the volume of distance balls, transportation distance between such balls, vanishing theorems for Betti numbers, bounds for the eigenvalues of the Laplace operator or control of harmonic functions. Several of these geometric properties turn out to be equivalent to the corresponding curvature bounds in the context of Riemannian geometry. Since those properties often are also meaningful in the more general framework of metric geometry, in recent years, there have been several research projects that turned those properties into axiomatic definitions of curvature bounds in metric geometry. In this contribution, after developing the Riemannian geometric background, we explore some of these axiomatic approaches. In particular, we shall describe the insights in graph theory and network analysis following from the corresponding axiomatic curvature definitions.

Notes

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Advanced Investigator Grant Agreement no. 267087. Frank Bauer was partially supported by the Alexander von Humboldt foundation and partially supported by the NSF Grant DMS-0804454 Differential Equations in Geometry. Shiping Liu was partially supported by the EPSRC Grant EP/K016687/1 Topology, Geometry and Laplacians of Simplicial Complexes. Bobo Hua was supported by the NSFC 11401106.

References

  1. 1.
    Ache, A., Warren, M.: Coarse Ricci curvature as a function on M × M (2015). arXiv preprint 1505.04461v1Google Scholar
  2. 2.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations. Springer, Berlin (2006)MATHGoogle Scholar
  3. 3.
    Bakry, D.: Functional inequalities for Markov semigroups. In: Probability Measures on Groups: Recent Directions and Trends, pp. 91–147. Tata Institute of Fundamental Research, Mumbai (2006)Google Scholar
  4. 4.
    Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985). http://dx.doi.org/10.1007/BFb0075847
  5. 5.
    Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996). doi:10.1215/S0012-7094-96-08511-7. http://dx.doi.org/10.1215/S0012-7094-96-08511-7 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev. Mat. Iberoamericana 22, 683–702 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bakry, D., Qian, Z.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155(1), 98–153 (2000). doi:http://dx.doi.org/10.1006/aima.2000.1932
  8. 8.
    Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Berlin (2014)CrossRefMATHGoogle Scholar
  9. 9.
    Bartholdi, L., Schick, T., Smale, N., Smale, S.: Hodge theory on metric spaces. Found. Comput. Math. 12, 1–48 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bauer, F.: Normalized graph Laplacians for directed graphs. Linear Algebra Appl. 436, 4193–4222 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bauer, F., Jost, J.: Bipartite and neighborhood graphs and the spectrum of the normalized graph Laplacian. Commun. Anal. Geom. 21, 787–845 (2013)CrossRefMATHGoogle Scholar
  12. 12.
    Bauer, F., Atay, F., Jost, J.: Synchronization in discrete-time networks with general pairwise coupling. Nonlinearity 22, 2333–2351 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bauer, F., Atay, F., Jost, J.: Synchronized chaos in networks of simple units. Europhys. Lett. 89, 20002–p1–p6 (2010)Google Scholar
  14. 14.
    Bauer, F., Jost, J., Liu, S.: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. Math. Res. Lett. 19, 1185–1205 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.: Li-Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bauer, F., Hua, B., Yau, S.T.: Davies-Gaffney-Grigor’yan lemma on graphs. Commun. Anal. Geom. 23, 1031–1068 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bačak, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin (2014)MATHGoogle Scholar
  18. 18.
    Bačak, M., Hua, B., Jost, J., Kell, M.: (in preparation)Google Scholar
  19. 19.
    Bačák, M., Hua, B., Jost, J., Kell, M., Schikorra, A.: A notion of nonpositive curvature for general metric spaces. Differ. Geom. Appl. 38, 22–32 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Berestovskij, V., Nikolaev, I.: Multidimensional generalized Riemannian spaces. In: Reshetnyak, Y.G. (ed.) Geometry IV. Encyclopedia of Mathematical Sciences, vol. 70, pp. 165–243. Springer, Berlin (1993)Google Scholar
  21. 21.
    Bhattacharya, B., Mukherjee, S.: Exact and asymptotic results on coarse Ricci curvature of graphs. Discret. Math. 338(1), 23–42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Bonciocat, A.I., Sturm, K.T.: Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256(9), 2944–2966 (2009). doi:10.1016/j.jfa.2009.01.029. http://dx.doi.org/10.1016/j.jfa.2009.01.029 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Bubley, R., Dyer, M.E.: Path coupling: a technique for proving rapid mixing in Markov chains. In: 38th Annual Symposium on Foundations of Computer Science (FOCS ’97), pp. 223–231 (1997)Google Scholar
  24. 24.
    Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Society, Providence, RI (2001)MATHGoogle Scholar
  25. 25.
    Chan, T., Shen, J.: Image Processing and Analysis. Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia, PA (2005)CrossRefMATHGoogle Scholar
  26. 26.
    Chung, F.: Spectral Graph Theory. American Mathematical Society, Providence, RI (1997)MATHGoogle Scholar
  27. 27.
    DeVos, M., Mohar, B.: An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture. Trans. Am. Math. Soc. 359(7), 3287–3300 (electronic) (2007). doi:http://dx.doi.org/10.1090/S0002-9947-07-04125-6
  28. 28.
    Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970)CrossRefMATHGoogle Scholar
  29. 29.
    Eckmann, B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv. 17(1), 240–255 (1944)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Eschenburg, J., Jost, J.: Differentialgeometrie und Minimalflächen. Springer, Berlin (2013)MATHGoogle Scholar
  31. 31.
    Evans, L.: Partial differential equations and Monge-Kantorovich mass transfer. Curr. Dev. Math. 1997, 65–126 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discret. Comput. Geom. 29(3), 323–374 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Funano, K.: Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds (2013). http://arxiv.org/abs/1307.3919 Google Scholar
  34. 34.
    Funano, K., Shioya, T.: Concentration, Ricci curvature, and eigenvalues of Laplacian. Geom. Funct. Anal. 23(3), 888–936 (2013)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Garland, H.: p-adic curvature and the cohomology of discrete subgroups of p-adic groups. Ann. Math. 97, 375–423 (1973)Google Scholar
  36. 36.
    Gauss, C.: Disquisitiones generales circa superficies curvas. In: Dombrowski, P. (ed.) 150 years after Gauss’ “Disquisitiones generales circa superficies curvas”. Société Mathématique de France, Paris (1979)Google Scholar
  37. 37.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Grigoryan, A.: Analysis on graphs. Technical Report, University of Bielefeld (2009). https://www.math.uni-bielefeld.de/~grigor/aglect.pdf Google Scholar
  39. 39.
    Horak, D., Jost, J.: Spectra of combinatorial laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Hua, B., Jost, J., Liu, S.: Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. J. Reine Angew. Math. 700, 1–36 (2015). http://dx.doi.org/10.1515/crelle-2013-0015 MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Jin, Y., Jost, J., Wang, G.: A nonlocal version of the Osher-Sole-Vese model. J. Math. Imaging Vision 44(2), 99–113 (2012)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Jin, Y., Jost, J., Wang, G.: A new nonlocal H 1 model for image denoising. J. Math. Imaging Vision 48(1), 93–105 (2014)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Jin, Y., Jost, J., Wang, G.: A new nonlocal variational setting for image processing. Inverse Prob. Imaging 9, 415–430 (2015)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Jost, J.: Equilibrium maps between metric spaces. Calc. Var. 2, 173–204 (1994)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Jost, J.: Generalized harmonic maps between metric spaces. In: Jost, J. (ed.) Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt, pp. 143–174. International Press, Boston (1996)Google Scholar
  46. 46.
    Jost, J.: Nonpositive Curvature: Geometric and Analytic Aspects. Birkhäuser, Basel (1997)CrossRefMATHGoogle Scholar
  47. 47.
    Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  48. 48.
    Jost, J.: Mathematical Methods in Biology and Neurobiology. Springer, Berlin (2014)CrossRefMATHGoogle Scholar
  49. 49.
    Jost, J.: Mathematical Concepts. Springer, Berlin (2015)CrossRefMATHGoogle Scholar
  50. 50.
    Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. Discrete Comput. Geom. 51, 300–322 (2014)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Jost, J., Yau, S.: Harmonic maps and superrigidity. Proc. Symp. Pure Math. 54(I), 245–280 (1993)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Kimmel, R., Malladi, R., Sochen, N.: Images as embedding maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)CrossRefMATHGoogle Scholar
  53. 53.
    Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Kwok, T.C., Lau, L.C., Lee, Y.T., Oveis Gharan, S., Trevisan, L.: Improved Cheeger’s inequality: analysis of spectral partitioning algorithms through higher order spectral gap. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pp. 11–20. ACM, New York (2013). doi:http://doi.acm.org/10.1145/2488608.2488611
  55. 55.
    Lee, J.R., Oveis Gharan, S., Trevisan, L.: Multi-way spectral partitioning and higher-order Cheeger inequalities. In: STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing, pp. 1117–1130. ACM, New York (2012). http://dx.doi.org/10.1145/2213977.2214078
  56. 56.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence, RI (2009). With a chapter by James G. Propp and David B. WilsonGoogle Scholar
  57. 57.
    Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)Google Scholar
  58. 58.
    Li, P., Yau, S.T.: On the parabolic kernel of the Schrdinger operator. Acta Math. 156(1), 153–201 (1986). doi:10.1007/BF02399203. http://dx.doi.org/10.1007/BF02399203 MathSciNetCrossRefGoogle Scholar
  59. 59.
    Lin, Y., Yau, S.T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17, 343–356 (2010)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Liu, S.: An optimal dimension-free upper bound for eigenvalue ratios (2014). http://arxiv.org/abs/1405.2213 Google Scholar
  61. 61.
    Liu, S., Peyerimhoff, N.: Eigenvalue ratios of nonnegatively curved graphs (2014). http://arxiv.org/abs/1406.6617 Google Scholar
  62. 62.
    Lohkamp, J.: Metrics of negative Ricci curvature. Ann. Math. 140, 655–683 (1994)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Loisel, B., Romon, P.: Ricci curvature on polyhedral surfaces via optimal transportation. Axioms 3(1), 119–139 (2014). https://hal.archives-ouvertes.fr/hal-00941486v2 CrossRefMATHGoogle Scholar
  64. 64.
    Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009). doi:10.4007/annals.2009.169.903. http://dx.doi.org/10.4007/annals.2009.169.903
  65. 65.
    Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. American Mathematical Society, Providence, RI (2001)CrossRefMATHGoogle Scholar
  66. 66.
    Miclo, L.: On eigenfunctions of Markov processes on trees. Probab. Theory Relat. Fields 142, 561–594 (2008)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Münch, F.: Li-Yau inequality on finite graphs via non-linear curvature dimension conditions (2014). arXiv:1412.3340Google Scholar
  68. 68.
    Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Ohta, S.I.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 805–828 (2007)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009). doi:http://dx.doi.org/10.1016/j.jfa.2008.11.001
  71. 71.
    Ollivier, Y.: A survey of Ricci curvature for metric spaces and Markov chains. In: Kotani, M., Hino, M., Kumagai, T. (eds.) Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics, vol. 57, pp. 343–381. Mathematical Society of Japan, Tokyo (2010)Google Scholar
  72. 72.
    Peres, Y.: Mixing for Markov chains and spin systems. Lecture Notes (2005). http://www.stat.berkeley.edu/~peres/ubc.pdf
  73. 73.
    Qian, B.: Remarks on Li-Yau inequality on graphs (2013). arXiv:1311.3367Google Scholar
  74. 74.
    Riemann, B.: Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Springer, Berlin (2013). Edited with a commentary by J. JostGoogle Scholar
  75. 75.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  76. 76.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009)MATHGoogle Scholar
  77. 77.
    Schmuckenschläger, M.: Curvature of Nonlocal Markov Generators. Convex Geometric Analysis, vol. 34, pp. 189–197. MSRI Publications, Berkeley, CA (1998)Google Scholar
  78. 78.
    Sreejith, R., Jost, J., Saucan, E., Samal, A.: Forman curvature for directed networks (2016). arXiv preprint arXiv:1605.04662Google Scholar
  79. 79.
    Sreejith, R., Mohanraj, K., Jost, J., Saucan, E., Samal, A.: Forman curvature for complex networks. J. Stat. Mech: Theory Exp. 2016(6), 063206 (2016)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Sreejith, R., Jost, J., Saucan, E., Samal, A.: Systematic evaluation of a new combinatorial curvature for complex networks (2016). arXiv preprint arXiv:1610.01507Google Scholar
  81. 81.
    Sturm, K.T.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177 (2006). doi:10.1007/s11511-006-0003-7. http://dx.doi.org/10.1007/s11511-006-0003-7 MathSciNetMATHGoogle Scholar
  82. 82.
    von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Villani, C.: Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009). doi:10.1007/978-3-540-71050-9. http://dx.doi.org/10.1007/978-3-540-71050-9
  84. 84.
    Wald, A.: Begründung einer koordinatenlosen Differentialgeometrie der Flächen. Ergebnisse eines Math. Kolloquiums, 1. Reihe 7, 24–46 (1936)Google Scholar
  85. 85.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefMATHGoogle Scholar
  86. 86.
    Weber, M., Saucan, E., Jost, J.: Can one see the shape of a network? (2016). arXiv preprint arXiv:1608.07838Google Scholar
  87. 87.
    Weber, M., Saucan, E., Jost, J.: Characterizing complex networks with Forman-Ricci curvature and associated geometric flows. arXiv preprint arXiv:1607.08654 (2016)Google Scholar
  88. 88.
    Weber, M., Jost, J., Saucan, E.: Forman-Ricci flow for change detection in large dynamic data sets. Axioms 5(4), 26 (2016)CrossRefGoogle Scholar
  89. 89.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)MATHGoogle Scholar
  90. 90.
    Zhang, H., Zhu, X.: Lipschitz continuity of harmonic maps between Alexandrov spaces (2013). arXiv:1311.1331Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Frank Bauer
    • 1
    • 2
  • Bobo Hua
    • 3
  • Jürgen Jost
    • 2
  • Shiping Liu
    • 4
  • Guofang Wang
    • 5
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of Mathematical SciencesFudan UniversityShanghaiChina
  4. 4.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina
  5. 5.Department of MathematicsFreiburg UniversityFreiburg im BreisgauGermany

Personalised recommendations