Advertisement

Performance Evaluation of Multiple Cloud Data Centers Allocations for HPC

  • Eduardo RoloffEmail author
  • Emmanuell Diaz Carreño
  • Jimmy K. M. Valverde-Sánchez
  • Matthias Diener
  • Matheus da Silva Serpa
  • Guillaume Houzeaux
  • Lucas M. Schnorr
  • Nicolas Maillard
  • Luciano Paschoal Gaspary
  • Philippe Navaux
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 697)

Abstract

This paper evaluates the behavior of the Microsoft Azure G5 cloud instance type over multiple Data Centers. The purpose is to identify if there are major differences between them and to help the users choose the best option for their needs. Our results show that there are differences in the network level for the same instance type in different locations and inside the same location at different times. The network performance causes interference in the applications level, as we could verify in our results.

Keywords

Cloud Computing HPC Azure MPI NAS 

Notes

Acknowledgments

This research received funding from the EU H2020 Programme and from MCTI/RNP-Brazil under the HPC4E project, grant agreement no. 689772. Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr). Additional funding was provided by CAPES and Microsoft.

References

  1. 1.
    Awad, O.M.O., Artoli, A.M.A., Ahmed, A.H.A.: Cloud computing versus in-house clusters: a comparative study. In: 2014 World Congress on Computer Applications and Information Systems (WCCAIS), pp. 1–6, January 2014Google Scholar
  2. 2.
    Ekanayake, J., Fox, G.: High performance parallel computing with clouds and cloud technologies. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) CloudComp 2009. LNICSSTE, vol. 34, pp. 20–38. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12636-9_2 CrossRefGoogle Scholar
  3. 3.
    He, Q., Zhou, S., Kobler, B., Duffy, D., McGlynn, T.: Case study for running HPC applications in public clouds. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC 2010, pp. 395–401. ACM, New York (2010). http://doi.acm.org/10.1145/1851476.1851535
  4. 4.
    Intel MPI Benchmarks: User Guide and Methodology Description (2014)Google Scholar
  5. 5.
    Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.: Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011)CrossRefGoogle Scholar
  6. 6.
    Marathe, A., Harris, R., Lowenthal, D.K., de Supinski, B.R., Rountree, B., Schulz, M., Yuan, X.: A comparative study of high-performance computing on the cloud. In: Proceedings of the 22nd International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2013, pp. 239–250. ACM, New York (2013). http://doi.acm.org/10.1145/2462902.2462919
  7. 7.
    da Rosa Righi, R., Rodrigues, V.F., da Costa, C.A., Galante, G., de Bona, L.C.E., Ferreto, T.: Autoelastic: automatic resource elasticity for high performance applications in the cloud. IEEE Trans. Cloud Comput. 4(1), 6–19 (2016)CrossRefGoogle Scholar
  8. 8.
    Vázquez, M., Houzeaux, G., Rubio, F., Simarro, C.: Alya multiphysics simulations on Intel’s Xeon Phi accelerators. In: Hernández, G., Barrios Hernández, C.J., Díaz, G., García Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA 2014. CCIS, vol. 485, pp. 248–254. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45483-1_18 Google Scholar
  9. 9.
    Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Arís, R., Mira, D., Calmet, H., Cucchietti, F., Owen, H., Taha, A., Burness, E.D., Cela, J.M., Valero, M.: Alya: multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016). The Route to Exascale: Novel Mathe-matical Methods, Scalable Algorithms and Computational Science Skills. http://www.sciencedirect.com/science/article/pii/S1877750315300521 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zounmevo, J.A., Kimpe, D., Ross, R., Afsahi, A.: Using MPI in high-performance computing services. In: Proceedings of the 20th European MPI Users’ Group Meeting, EuroMPI 2013, pp. 43–48. ACM, New York (2013). http://doi.acm.org/10.1145/2488551.2488556

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eduardo Roloff
    • 1
    Email author
  • Emmanuell Diaz Carreño
    • 1
  • Jimmy K. M. Valverde-Sánchez
    • 1
  • Matthias Diener
    • 1
  • Matheus da Silva Serpa
    • 1
  • Guillaume Houzeaux
    • 2
  • Lucas M. Schnorr
    • 1
  • Nicolas Maillard
    • 1
  • Luciano Paschoal Gaspary
    • 1
  • Philippe Navaux
    • 1
  1. 1.Informatics InstituteFederal University of Rio Grande do Sul - UFRGSPorto AlegreBrazil
  2. 2.Department of Computer Applications in Science and EngineeringBarcelona Supercomputing Center (BSC-CNS)BarcelonaSpain

Personalised recommendations