Efficient P2P Inspired Policy to Distribute Resource Information in Large Distributed Systems

  • Paula Verghelet
  • Esteban Mocskos
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 697)


The computational infrastructures are becoming larger and more complex. Their organization and interconnection are acquiring new dimensions with the increasing adoption of Cloud Technology and the establishment of Federations of cloud providers.

These large interconnected systems require monitoring at different levels of the infrastructure: from the availability of hardware resources to the effective provision of services and verification of terms of the established agreements.

Monitoring becomes a fundamental component of any Cloud Service or Federation, as the up-to-date information about resources in the system is extremely important to be used as an input to the scheduler component. The way in which the different members of such a distributed system obtain and distribute the resource information is what is known as Resource Information Distribution Policy.

Moving towards the obtention of a scalable and easy to maintain policy leads to interaction with the Peer to Peer (P2P) paradigm. Some of the proposed policies are based on establishing a ranking according to previous communications between nodes. These policies are known as learning based methods or Best-Neighbor (BN). However, the use of this type of policies shows poor performance and limited scalability compared with defacto Hierarchical or other hybrid policies.

In this work, we introduce pBN which is a fully distributed resource information policy based on P2P. We analyze some reasons that could produce the poor performance in standard BN and propose an improvement which shows performance and bandwidth consumption similar to Hierarchical policy and other hybrid variations. To compare the different policies, a specific simulation tool is used with different system sizes and exponential network topology.


Distributed systems Monitoring Resource distribution policy 



E.M. is researcher at the CONICET. This work was partially supported by grants from Universidad de Buenos Aires (UBACyT 20020130200096BA), CONICET (PIP 11220110100379 and PIO 13320150100020CO), and ANPCyT (PICT-2015-2761 and PICT-2015-0370).


  1. 1.
    Agrawal, D., Giles, J., Lee, K.W., Voruganti, K., Filali-Adib, K.: Policy-based validation of san configuration. In: Proceedings of Fifth IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY 2004, pp. 77–86, June 2004Google Scholar
  2. 2.
    Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401, 130–131 (1999). CrossRefGoogle Scholar
  3. 3.
    Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., Buyya, R.: Big data computing and clouds: trends and future directions. J. Parallel Distrib. Comput. 79–80, 3–15 (2014)., special Issue on Scalable Systems for Big Data Management and AnalyticsGoogle Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: Proceedings of AAAI Conference on Weblogs and Social Media, May 2009.
  6. 6.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008). CrossRefGoogle Scholar
  7. 7.
    Casanova, H., Legrand, A., Quinson, M.: SimGrid: a generic framework for large-scale distributed experiments. In: 10th IEEE International Conference on Computer Modeling and Simulation, pp. 126–131. IEEE Computer Society, Los Alamitos, March 2008Google Scholar
  8. 8.
    Cesario, E., Mastroianni, C., Talia, D.: Distributed volunteer computing for solving ensemble learning problems. Future Gen. Comput. Syst. (2015, in press).
  9. 9.
    Clayman, S., Toffetti, G., Galis, A., Chapman, C.: Monitoring services in a federated cloud: the RESERVOIR experience. In: Achieving Federated and Self-Manageable Cloud Infrastructures: Theory and Practice, pp. 242–265. IGI Global, May 2012Google Scholar
  10. 10.
    Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y.: The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J. Supercomput. 64(3), 835–848 (2013). CrossRefGoogle Scholar
  11. 11.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10, November 2008Google Scholar
  12. 12.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  13. 13.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001). CrossRefGoogle Scholar
  14. 14.
    Ghafarian, T., Deldari, H., Javadi, B., Yaghmaee, M.H., Buyya, R.: Cycloidgrid: a proximity-aware P2P-based resource discovery architecture in volunteer computing systems. Future Gen. Comput. Syst. 29(6), 1583–1595 (2013). Including Special sections: High Performance Computing in the Cloud & Resource Discovery Mechanisms for P2P Systems. CrossRefGoogle Scholar
  15. 15.
    Hasanzadeh, M., Meybodi, M.R.: Distributed optimization grid resource discovery. J. Supercomput. 71(1), 87–120 (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Iamnitchi, A., Foster, I., Nurmi, D.: A peer-to-peer approach to resource discovery in grid environments. In: Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing HPDC-11 (HPDC 2002), p. 419. IEEE, Edinbourgh, July 2002Google Scholar
  17. 17.
    Iamnitchi, A., Foster, I.: A peer-to-peer approach to resource location in grid environments. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management: State of the Art and Future Trends, pp. 413–429. Kluwer Academic Publishers, Norwell (2004)CrossRefGoogle Scholar
  18. 18.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs, S., Rodríguez, M., Mercè, O., Marosi, A.C., Marco, J., Franch, X.: Enhancing federated cloud management with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720 (2013)CrossRefGoogle Scholar
  20. 20.
    Liu, W., Nishio, T., Shinkuma, R., Takahashi, T.: Adaptive resource discovery in mobile cloud computing. Comput. Commun. 50, 119–129 (2014). Green Networking. CrossRefGoogle Scholar
  21. 21.
    Mastroianni, C., Talia, D., Verta, O.: A super-peer model for resource discovery services in large-scale grids. Future Gen. Comput. Syst. 21(8), 1235–1248 (2005). CrossRefGoogle Scholar
  22. 22.
    Mastroianni, C., Talia, D., Verta, O.: Designing an information system for grids: comparing hierarchical, decentralized P2P and super-peer models. Parallel Comput. 34(10), 593–611 (2008)CrossRefGoogle Scholar
  23. 23.
    Mattmann, C., Garcia, J., Krka, I., Popescu, D., Medvidovic, N.: Revisiting the anatomy and physiology of the grid. J. Grid Comput. 13(1), 19–34 (2015)CrossRefGoogle Scholar
  24. 24.
    Meshkova, E., Riihijärvi, J., Petrova, M., Mähönen, P.: A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Comput. Netw. 52(11), 2097–2128 (2008). CrossRefGoogle Scholar
  25. 25.
    Mocskos, E.E., Yabo, P., Turjanski, P.G., Fernandez Slezak, D.: Grid matrix: a grid simulation tool to focus on the propagation of resource and monitoring information. Simul.-T. Soc. Mod. Sim. 88(10), 1233–1246 (2012)Google Scholar
  26. 26.
    Olaifa, M., Mapayi, T., Merwe, R.V.D.: Multi ant LA: an adaptive multi agent resource discovery for peer to peer grid systems. In: Science and Information Conference (SAI), pp. 447–451, July 2015Google Scholar
  27. 27.
    Pipan, G.: Use of the TRIPOD overlay network for resource discovery. Future Gen. Comput. Syst. 26(8), 1257–1270 (2010). CrossRefGoogle Scholar
  28. 28.
    Plale, B., Jacobs, C., Jensen, S., Liu, Y., Moad, C., Parab, R., Vaidya, P.: Understanding grid resource information management through a synthetic database benchmark/workload. In: Proceedings of the 2004 IEEE International Symposium on Cluster Computing and the Grid, CCGRID 2004, pp. 277–284. IEEE Computer Society, Washington, April 2004Google Scholar
  29. 29.
    Puppin, D., Moncelli, S., Baraglia, R., Tonellotto, N., Silvestri, F.: A grid information service based on peer-to-peer. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 454–464. Springer, Heidelberg (2005). doi: 10.1007/11549468_52 CrossRefGoogle Scholar
  30. 30.
    Ranjan, R., Harwood, A., Buyya, R.: Peer-to-peer-based resource discovery in global grids: a tutorial. IEEE Commun. Surv. Tutor. 10(2), 6–33 (2008)CrossRefGoogle Scholar
  31. 31.
    Ranjan, R., Zhao, L.: Peer-to-peer service provisioning in cloud computing environments. J. Supercomput. 65(1), 154–184 (2013)CrossRefGoogle Scholar
  32. 32.
    Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings of First International Conference on Peer-to-Peer Computing, pp. 99–100, August 2001Google Scholar
  33. 33.
    Shiers, J.: The worldwide LHC computing grid (worldwide LCG). Comput. Phys. Commun. 177(1–2), 219–223 (2007)CrossRefGoogle Scholar
  34. 34.
    Trunfio, P., Talia, D., Papadakis, C., Fragopoulou, P., Mordacchini, M., Pennanen, M., Popov, K., Vlassov, V., Haridi, S.: Peer-to-peer resource discovery in grids: models and systems. Future Gen. Comput. Syst. 23(7), 864–878 (2007)CrossRefGoogle Scholar
  35. 35.
    Verghelet, P., Mocskos, E.: Improvements to super-peer policy communication mechanisms. In: Osthoff, C., Navaux, P.O.A., Barrios Hernandez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 73–86. Springer, Cham (2015). doi: 10.1007/978-3-319-26928-3_6 Google Scholar
  36. 36.
    Verghelet, P., Slezak, D.F., Turjanski, P., Mocskos, E.: Using distributed local information to improve global performance in grids. CLEIej 15(3), 8 (2012). Google Scholar
  37. 37.
    Williams, D.N., Drach, R., Ananthakrishnan, R., Foster, I., Fraser, D., Siebenlist, F., Bernholdt, D., Chen, M., Schwidder, J., Bharathi, S., et al.: The earth system grid: enabling access to multimodel climate simulation data. Bull. Am. Meteorol. Soc. 90(2), 195–205 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Centro de Simulación Computacional p/Aplic. Tecnológicas/CSC-CONICETBuenos AiresArgentina

Personalised recommendations