Skip to main content
  • 390 Accesses

Abstract

The currently prevalent somatic mutation theory of carcinogenesis and metastases explicitly assumes that cancer is a cellular disease, i.e. a disease of the control of cell proliferation and/or cell differentiation. Accordingly, explanations should always be sought for at a gene and/or gene product level, regardless of the level of organization at which the phenomenon is observed. Such a reductionist approach characterized the century-old effort to find cancer cell singularities, absent in normal cells, without apparent success, however. More recently alternative views have been put forward, assuming that cancer is a tissue based disease involving disturbed interactions within the tissue architecture.

In this review, selected reports on normal tissue homeostasis and bone marrow contribution to both tumour cells and tumour stroma are reviewed. Regarding normal tissues, the existence of a complex homeostatic system actually involving the whole organism emerges. Regarding tumours, remarkable similarities with normal tissue activities are apparent, providing some evidence that tumours share many biological features and processes with normal tissues. The review supports the concept that cancer is a tissue based disease and that its pathological nature may result from unbalanced/untimely activation of otherwise normal physiological processes.

The text of this chapter is basically extracted from a paper published in Targeted Oncology in 2013: Demicheli R: Tumours and tissues: similar homeostatic systems? Target Oncol. 2013 Jun;8(2):97–105. doi: 10.1007/s11523-013-0277-6 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nowell PC (1986) Mechanisms of tumour progression. Cancer Res 46:2203–2207

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  3. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117:1495–1502

    Article  CAS  PubMed  Google Scholar 

  5. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumour stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tarin D (2012) Clinical and biological implications of the tumour microenvironment. Cancer Microenviron 5(2):95–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H (2008) Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321:1841–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rubin H (2006) What keeps cells in tissues behaving normally in the face of myriad mutations? Bioassays 28:515–524

    Article  CAS  Google Scholar 

  9. Demicheli R, Retsky MW, Hrushesky WJ, Baum M (2007) Tumour dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4:699–710

    Article  PubMed  Google Scholar 

  10. Demicheli R, Fornili M, Ambrogi F, Higgins K, Boyd JA, Biganzoli E, Kelsey CR (2012) Recurrence dynamics for non-small cell lung cancer: effect of surgery on the development of metastases. J Thorac Oncol 7:723–730

    Article  PubMed  Google Scholar 

  11. Martin P, Parkhurst SM (2004) Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034

    Article  CAS  PubMed  Google Scholar 

  12. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    CAS  PubMed  Google Scholar 

  13. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  CAS  PubMed  Google Scholar 

  14. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196:245–250

    Article  CAS  PubMed  Google Scholar 

  15. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F (2004) Contribution of bone marrow-derived cell to skin: collagen deposition and wound repair. Stem Cells 22:812–822

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prockop DJ (1997) Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587

    Article  CAS  PubMed  Google Scholar 

  18. Ji KH, Xiong J, Fan LX, Hu KM, Liu HQ (2009) Rat marrow-derived multipotent adult progenitor cells differentiate into skin epidermal cells in vivo. J Dermatol 36:403–409

    Google Scholar 

  19. Rea S, Giles NL, Webb S, Adcroft KF, Evill LM, Strickland DH, Wood FM, Fear MW (2009) Bone marrow-derived cells in the healing burn wound – more than just inflammation. Burns 35:356–364

    Google Scholar 

  20. Tamai K, Yamazaki T, Chino T, Ishii M, Otsuru S, Kikuchi Y, Iinuma S, Saga K, Nimura K, Shimbo T, Umegaki N, Katayama I, Miyazaki J, Takeda J, McGrath JA, Uitto J, Kaneda Y (2011) PDGFRα-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. PNAS 108:6609–6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verstappen J, Katsaros C, Kuijpers-Jagtman AM, Torensma R, Von der Hoff JW (2001) The recruitment of bone marrow-derived cells to skin wounds is independent of wound size. Wound Repair Regen 19:260–267

    Article  Google Scholar 

  22. Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y (2011) Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117:5264–5272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herzog EL, Van Arnam J, Hu B, Krause DS (2006) Threshold of lung injury required for the appearance of marrow-derived lung epithelia. Stem Cells 24:1986–1992

    Article  PubMed  Google Scholar 

  24. Spees JL, Whitney MJ, Sullivan DE, Lasky JA, Laboy M, Ylostalo J, Prockop DJ (2008) Bone marrow progenitor cells contribute to repair and remodelling of the lung and heart in a rat model of progressive pulmonary hypertension. FASEB J 22:1226–1236

    Article  CAS  PubMed  Google Scholar 

  25. Tran SD, Pillemer SR, Dutra A, Barrett AJ, Brownstein MJ, Key S, Pak E, Leakan RA, Kingman A, Yamada KM, Baum BJ, Mezey E (2003) Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet 361:1084–1088

    Google Scholar 

  26. Sumita Y, Liu Y, Khalili S, Maria OM, Xia D, Key S, Cotrim AP, Mezey E, Tran SD (2011) Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell B 43:80–87

    Article  CAS  Google Scholar 

  27. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS (2000) Liver from bone marrow in humans. Hepathology 32:11–16

    Article  CAS  Google Scholar 

  28. Kleeberger W, Versmold A, Rothämel T, Glöckner S, Bredt M, Haverich A, Lehmann U, Kreipe H (2003) Increased chimerism of bronchial and alveolar epithelium in human lung allografts undergoing chronic injury. Am J Pathol 162:1487–1494

    Article  PubMed  PubMed Central  Google Scholar 

  29. Spencer H, Rampling D, Aurora P, Bonnet D, Hart SL, Jaffé A (2005) Transbronchial biopsies provide longitudinal evidence for epithelial chimerism in children following sex mismatched lung transplantation. Thorax 60:60–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suratt BT, Cool CD, Serls AE, Chen L, Varella-Garcia M, Shpall EJ, Brown KK, Worthen GS (2003) Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 168:318–322

    Article  PubMed  Google Scholar 

  31. Tran SD, Redman RS, Barrett AJ, Pavletic SZ, Key S, Liu Y, Carpenter A, Nguyen HM, Sumita Y, Baum BJ, Pillemer SR, Mezey E (2011) Microchimerism in salivary glands after blood- and marrow- derived stem cell transplantation. Biol Blood Marrow Transplant 17:429–433

    Article  PubMed  Google Scholar 

  32. Valcz G, Krenács T, Sipos F, Patai AV, Wichmann B, Leiszter K, Tóth K, Balogh Z, Csizmadia A, Hagymási K, Masszi T, Molnár B, Tulassay Z (2011) Lymphoid aggregates may contribute to the migration and epithelial commitment of bone marrow-derived cells in colonic mucosa. J Clin Pathol 64:771–775

    Article  PubMed  Google Scholar 

  33. Drukala J, Paczkowska E, Kucia M, Młyńska E, Krajewski A, Machaliński B, Madeja Z, Ratajczak MZ (2012) Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev 8:184–194

    Article  CAS  PubMed  Google Scholar 

  34. Tomihara K, Dehari H, Yamaguchi A, Abe M, Miyazaki A, Nakamori K, Hareyama M, Hiratsuka H (2009) Squamous cell carcinoma of the buccal mucosa in a young adult with history of allogenic bone marrow transplantation for childhood acute leukemia. Head Neck 31:565–568

    Article  PubMed  Google Scholar 

  35. Janin A, Murata H, Leboeuf C, Cayuela JM, Gluckman E, Legrès L, Desveaux A, Varna M, Ratajczak P, Soulier J, de Thé H, Bertheau P, Socié G (2009) Donor-derived oral squamous cell carcinoma after allogenic bone marrow transplantation. Blood 113:1834–1840

    Article  CAS  PubMed  Google Scholar 

  36. Hu YX, Luo Y, Tan YM, Shi JM, Sheng LX, Fu HR, Liu LZ, Xu YL, Wu KN, Xiao HW, Zhang LF, Yu XH, Cai Z, Huang H (2012) Donor bone marrow-derived stem cells contribute to oral squamous cell carcinoma transformation in a recipient after hematopoietic stem cell transplantation. Stem Cell Dev 21:177–180

    Article  Google Scholar 

  37. Avital I, Moreira AL, Klimstra DS, Leversha M, Papadopoulos EB, Brennan M, Downey RJ (2007) Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation. Stem Cells 25:2903–2909

    Article  PubMed  Google Scholar 

  38. Soldini D, Moreno E, Martin V, Gratwohl A, Marone C, Mazzucchelli L (2008) BM-derived cells randomly contribute to neoplastic and non-neoplastic epithelial tissues at low rates. Bone Marrow Transplant 42:749–755

    Article  CAS  PubMed  Google Scholar 

  39. Golfinopouloss V, Pentheroudakis G, Kamakari S, Metaxa-Mariatou V, Pavlidis N (2009) Donor-derived breast cancer in a bone marrow transplantation recipient. Breast Cancer Res Treat 113:211–213

    Article  PubMed  Google Scholar 

  40. Hutchinson L, Stenstrom B, Chen D, Piperdi B, Levey S, Lyle S, Wang TC, Houghton J (2011) Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogenic stem cell transplant. Stem Cells Dev 20:11–17

    Article  CAS  PubMed  Google Scholar 

  41. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric cancer originating from bone marrow derived cells. Science 306:1568–1571

    Article  CAS  PubMed  Google Scholar 

  42. Cogle CR, Theise ND, Fu D, Ucar D, Lee S, Guthrie SM, Lonergan J, Rybka W, Krause DS, Scott EW (2007) Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry. Stem Cells 25:1881–1887

    Article  PubMed  Google Scholar 

  43. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  Google Scholar 

  44. Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309:232–240

    Article  CAS  PubMed  Google Scholar 

  45. Dudley AC, Udagawa T, Melero-Martin JM, Shih SC, Curatolo A, Moses MA, Klagsbrun M (2010) Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumours. Blood 116:3367–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Madlambayan GJ, Butler JM, Hosaka K, Jorgensen M, Fu D, Guthrie SM, Shenoy AK, Brank A, Russell KJ, Otero J, Siemann DW, Scott EW, Cogle CR (2009) Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood 114:4310–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumour growth. Cancer Cell 198:257–272

    Article  Google Scholar 

  48. Scarlett CJ, Colvin EK, Pinese M, Chang DK, Morey AL, Musgrove EA, Pajic M, Apte M, Henshall SM, Sutherland RL, Kench JG, Biankin AV (2011) Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumour-host interaction. PLoS One 6(10):e26088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin H, Aiyer A, Su J, Borgstrom P, Stupack D, Friedlander M, Varner J (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest 116:652–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goldstein RH, Reagan MR, Anderson K, Kaplan DR, Rosenblatt M (2010) Human bone marrow-derived MSCs can home to orthotopic breast cancer tumours and promote bone metastasis. Cancer Res 70:10044–10050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA, Weinberg RA (2008) Systemic endocrine instigation of indolent tumour growth requires osteopontin. Cell 133:994–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takemoto Y, Li TS, Kubo M, Ohshima M, Ueda K, Harada E, Enoki T, Okamoto M, Mizukami Y, Murata T, Hamano K (2011) Operative injury accelerates tumour growth by inducing mobilization and recruitment of bone marrow-derived stem cells. Surgery 149:792–800

    Article  PubMed  Google Scholar 

  53. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D, Chen J, Resau JH, The BT (2006) Preparing the “soil”: the primary tumour induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376

    Article  Google Scholar 

  55. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wong CCL, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO, Wirtz D, Semenza GL (2011) Hypoxia-inducible factor 1is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A 108:16369–16374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gil-Bernabe´ AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH, Watson K, Hill SA, Amirkhosravi A, Francis JL, Pollard JW, Ruf W, Muschel RJ (2012) Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119:3164–3175

    Article  PubMed  Google Scholar 

  58. Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, Jain RK (2011) Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci U S A 108:3725–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massagué J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–91

    Article  PubMed  Google Scholar 

  61. Cheng Q, Zhang XHF, Massaguè J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20:538–549

    Article  Google Scholar 

  62. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  CAS  PubMed  Google Scholar 

  63. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305:90–93

    Article  CAS  PubMed  Google Scholar 

  64. Zuba-Surma EK, Kucia M, Abdel-Latif A, Dawn B, Hall B, Singh R, Lillard JW Jr, Ratajczak MZ (2008) Morphological characterization of very small embryonic-like stem cells (VSELs) by image stream system analysis. J Cell Mol Med 12:292–303

    Article  PubMed  Google Scholar 

  65. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2006) Morphological and molecular characterization of novel population of CXCR4+SSEA-4+Oct-4+ very small embryonic-like cells purified from human cord blood—preliminary report. Leukemia 21:297–303

    Article  PubMed  Google Scholar 

  66. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M, Karbicka A, Nowik M, Nowacki P, Ratajczak MZ, Machalinski B (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244

    Article  CAS  PubMed  Google Scholar 

  67. Zuba-Surma EK, Guo Y, Taher H, Sanganalmath SK, Hunt G, Vincent RJ, Kucia M, Abdel-Latif A, Tang XL, Ratajczak MZ, Dawn B, Bolli R (2011) Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cell Mol Med 15:1319–1328

    Article  CAS  PubMed  Google Scholar 

  68. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  CAS  PubMed  Google Scholar 

  69. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  70. Pisetsky DS, Gauley J, Ullal AJ (2011) Microparticles as a source of extracellular DNA. Immunol Res 49:227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448

    Article  CAS  PubMed  Google Scholar 

  72. Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS, Puente N, Ayala C, Brilliant K, Berz D, Lee D, Ramratnam B, McMillan PN, Hixson DC, Josic D, Quesenberry PJ (2010) Microvesicle entry into marrow cells mediates tissue specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp Hematol 38:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5:e11803

    Article  PubMed  PubMed Central  Google Scholar 

  74. Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, Holowka DA, Cerione RA (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 108:4852–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hood JL, Roman SS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumour metastasis. Cancer Res 71:3792–3801

    Article  CAS  PubMed  Google Scholar 

  76. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B, Camussi G (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–5356

    Article  CAS  PubMed  Google Scholar 

  77. Del Tatto M, Ng T, Aliotta JM, Colvin GA, Dooner MS, Berz D, Dooner GJ, Papa EF, Hixson DC, Ramratnam B, Aswad BI, Sears EH, Reagan J, Quesenberry PJ (2011) Marrow cell genetic phenotype change induced by human lung cancer cells. Exp Hematol 39:1072–1080

    Article  PubMed  PubMed Central  Google Scholar 

  78. Maria OM, Tran SD (2011) Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype. Stem Cells Dev 20:959–967

    Article  CAS  PubMed  Google Scholar 

  79. Boulanger CA, Bruno RD, Rosu-Miles M, Smith GH (2012) The mouse mammary microenvironment redirects mesoderm-derived bone marrow cells to a mammary epithelial progenitor cell fate. Stem Cells Dev 21(6):948–954

    Article  CAS  PubMed  Google Scholar 

  80. Theise ND, Krause DS (2001) Suggestions for a new paradigm of cell differentiation potential. Blood Cells Mol Dis 27:625–631

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

The author has declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romano Demicheli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Demicheli, R. (2017). Cancer: Nurture and Nature. In: Retsky, M., Demicheli, R. (eds) Perioperative Inflammation as Triggering Origin of Metastasis Development. Springer, Cham. https://doi.org/10.1007/978-3-319-57943-6_10

Download citation

Publish with us

Policies and ethics