Skip to main content

Towards a Physical Scale Decomposition of Mean Skin Friction Generation in the Turbulent Boundary Layer

  • Conference paper
  • First Online:
Progress in Turbulence VII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 196))

Abstract

A decomposition of mean skin friction generation in zero-pressure-gradient boundary layers is presented, relying on an energy budget in an absolute reference frame. It has a direct physical interpretation and emphasizes the importance of the production of turbulent kinetic energy in the logarithmic layer in mean skin friction generation at very high Reynolds number. This leads to a new approach to the scale decomposition of mean skin friction, illustrated using a Wall-Resolved LES at \(Re_\theta \) = 13,000 obtained by the ZDES technique. The role of superstructures is especially discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Aupoix, Couches Limites Bidimensionnelles Compressibles. Descriptif et Mode d’emploi du Code CLICET—Version 2010. Technical Report RT 1/117015 DMAE, Onera (2010)

    Google Scholar 

  2. S. Deck, Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid. Dyn. 26, 523–550 (2012)

    Article  Google Scholar 

  3. S. Deck, N. Renard, R. Laraufie, P.E. Weiss, Large scale contribution to mean wall shear stress in high Reynolds number flat plate boundary layers up to \(Re_\theta \) =13,650. J. Fluid. Mech. 743, 202–248 (2014).

    Google Scholar 

  4. D.B. DeGraaff, J.K. Eaton, Reynolds number scaling of the flat plate turbulent boundary layer. J. Fluid. Mech. 422, 319–346 (2000)

    Article  MATH  Google Scholar 

  5. G. Eitel-Amor, R. Örlü, P. Schlatter, Simulation and validation of a spatially evolving turbulent boundary layer up to \(Re_\theta \) = 8,300. Int. J. Heat. Fluid. Flow. 47, 57–69 (2014)

    Article  Google Scholar 

  6. K. Fukagata, K. Iwamoto, N. Kasagi, Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids. 14(11), 73–76 (2002)

    Article  MATH  Google Scholar 

  7. W. Jones, B. Launder, The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat. Mass. Trans. 15(2), 301–314 (1972)

    Article  Google Scholar 

  8. I. Marusic, G. Kunkel, Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids. 15(8), 2461–2464 (2003)

    Article  MATH  Google Scholar 

  9. I. Marusic, A. Uddin, A. Perry, Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys. Fluids. 9, 3718–3726 (1997)

    Article  Google Scholar 

  10. R. Michel, C. Quémard, R. Durant, Application d’un schéma de longueur de mélange à l’étude des couches limites turbulentes d’équilibre. Note Technique 154, ONERA (1969)

    Google Scholar 

  11. P. Orlandi, J. Jiménez, On the generation of turbulent wall friction. Phys. Fluids. 6, 634–641 (1994)

    Article  Google Scholar 

  12. N. Renard, S. Deck, On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number \(Re_\theta \) = 13,000. J. Fluid. Mech. 775, 105–148 (2015)

    Article  MathSciNet  Google Scholar 

  13. N. Renard, S. Deck, A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid. Mech. 790, 339–367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Schlatter, R. Örlü, Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid. Mech. 659, 116–126 (2010)

    Article  MATH  Google Scholar 

  15. J. Sillero, J. Jimenez, R. Moser, One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys. Fluids. 25, 105102 (2013)

    Article  Google Scholar 

  16. J. Sillero, J. Jimenez, R. Moser, Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys. Fluids. 26, 105109 (2014)

    Article  Google Scholar 

  17. A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Ann. Rev. Fluid. Mech. 43, 353–375 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the people involved in the past and present evolution of the FLU3M code. Romain Laraufie and Pierre-Élie Weiss are warmly acknowledged for very stimulating discussions. The WRLES computation was made thanks to the HPC resources from GENCI-CINES (Project ZDESWALLTURB, Grant 2012-[c2012026817]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Renard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Renard, N., Deck, S. (2017). Towards a Physical Scale Decomposition of Mean Skin Friction Generation in the Turbulent Boundary Layer. In: Örlü, R., Talamelli, A., Oberlack, M., Peinke, J. (eds) Progress in Turbulence VII. Springer Proceedings in Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-57934-4_9

Download citation

Publish with us

Policies and ethics