The Complexity of Diagnosability and Opacity Verification for Petri Nets

  • Béatrice Bérard
  • Stefan Haar
  • Sylvain Schmitz
  • Stefan Schwoon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10258)

Abstract

Diagnosability and opacity are two well-studied problems in discrete-event systems. We revisit these two problems with respect to expressiveness and complexity issues.

We first relate different notions of diagnosability and opacity. We consider in particular fairness issues and extend the definition of Germanos et al. [ACM TECS, 2015] of weakly fair diagnosability for safe Petri nets to general Petri nets and to opacity questions.

Second, we provide a global picture of complexity results for the verification of diagnosability and opacity. We show that diagnosability is \(\mathsf {NL}\)-complete for finite state systems, \(\mathsf {PSPACE}\)-complete for safe Petri nets (even with fairness), and \(\mathsf {EXPSPACE}\)-complete for general Petri nets without fairness, while non diagnosability is inter-reducible with reachability when fault events are not weakly fair. Opacity is \(\mathsf {ESPACE}\)-complete for safe Petri nets (even with fairness) and undecidable for general Petri nets already without fairness.

References

  1. 1.
    Badouel, E., Bednarczyk, M.A., Borzyszkowski, A.M., Caillaud, B., Darondeau, P.: Concurrent secrets. Discrete Event Dyn. Syst. 17(4), 425–446 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bryans, J., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to transition systems. Int. J. Inf. Secur. 7(6), 421–435 (2008)CrossRefGoogle Scholar
  3. 3.
    Cabasino, M.P., Giua, A., Lafortune, S., Seatzu, C.: A new approach for diagnosability analysis of Petri nets using verifier nets. IEEE Trans. Autom. Control 57(12), 3104–3117 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cassez, F., Dubreil, J., Marchand, H.: Dynamic observers for the synthesis of opaque systems. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 352–367. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04761-9_26 CrossRefGoogle Scholar
  5. 5.
    Esparza, J.: Decidability and complexity of Petri net problems — an introduction. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_20 CrossRefGoogle Scholar
  6. 6.
    Even, S.: On information lossless automata of finite order. IEEE Trans. Elec. Comput. EC-14(4), 561–569 (1965)Google Scholar
  7. 7.
    Germanos, V., Haar, S., Khomenko, V., Schwoon, S.: Diagnosability under weak fairness. ACM Trans. Embed. Comput. Syst. 14(4:69), 132–141 (2015)Google Scholar
  8. 8.
    Haar, S.: Qualitative diagnosability of labeled Petri nets revisited. In: Proceedings of CDC 2009 and CCC 2009, pp. 1248–1253. IEEE (2009)Google Scholar
  9. 9.
    Haar, S.: Types of asynchronous diagnosability and the reveals-relation in occurrence nets. IEEE Trans. Autom. Control 55(10), 2310–2320 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Haar, S.: What topology tells us about diagnosability in partial order semantics. Discrete Event Dyn. Syst. 22(4), 383–402 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Haar, S., Rodríguez, C., Schwoon, S.: Reveal your faults: it’s only fair! In: Proceedings of ACSD 2013, pp. 120–129. IEEE (2013)Google Scholar
  12. 12.
    Habermehl, P.: On the complexity of the linear-time \(\mu \)-calculus for Petri Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116. Springer, Heidelberg (1997). doi:10.1007/3-540-63139-9_32 CrossRefGoogle Scholar
  13. 13.
    Howell, R.R., Rosier, L.E., Yen, H.C.: A taxonomy of fairness and temporal logic problems for Petri nets. Theor. Comput. Sci. 82(2), 341–372 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jančar, P.: Decidability of a temporal logic problem for Petri nets. Theor. Comput. Sci. 74(1), 71–93 (1990)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jančar, P.: Nonprimitive recursive complexity and undecidability for Petri net equivalences. Theor. Comput. Sci. 256(1–2), 23–30 (2001)MathSciNetMATHGoogle Scholar
  16. 16.
    Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing diagnosability of discrete event systems. IEEE Trans. Autom. Control 46(8), 1318–1321 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri nets. Theor. Comput. Sci. 4(3), 277–299 (1977)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In: Proceedings of LICS 2015, pp. 56–67. IEEE (2015)Google Scholar
  19. 19.
    Lin, F.: Opacity of discrete event systems and its applications. Automatica 47(3), 496–503 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lipton, R.: The reachability problem requires exponential space. Technical report 62. Yale University (1976)Google Scholar
  21. 21.
    Madalinski, A., Khomenko, V.: Diagnosability verification with parallel LTL-X model checking based on Petri net unfoldings. In: Proceedings of SysTol 2010, pp. 398–403. IEEE (2010)Google Scholar
  22. 22.
    Mayer, A.J., Stockmeyer, L.J.: The complexity of word problems–this time with interleaving. Inf. Comput. 115(2), 293–311 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Schmitz, S.: Automata column: the complexity of reachability in vector addition systems. ACM SIGLOG News 3(1), 3–21 (2016)Google Scholar
  25. 25.
    Tong, Y., Li, Z., Seatzu, C., Giua, A.: Verification of initial-state opacity in Petri nets. In: Proceedings of CDC 2015, pp. 344–349. IEEE (2015)Google Scholar
  26. 26.
    Vogler, W.: Fairness and partial order semantics. Inf. Process. Lett. 55(1), 33–39 (1995)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Yoo, T.S., Lafortune, S.: Polynomial-time verification of diagnosability of partially observed discrete event systems. IEEE Trans. Autom. Control 47(9), 1491–1495 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Béatrice Bérard
    • 1
    • 2
  • Stefan Haar
    • 2
  • Sylvain Schmitz
    • 2
  • Stefan Schwoon
    • 2
  1. 1.Sorbonne Universités, UPMC University Paris 06, LIP6ParisFrance
  2. 2.INRIA and LSV, CNRS and ENS CachanUniversité Paris-SaclayCachanFrance

Personalised recommendations