Model Checking Concurrency and Causality

  • Karsten Wolf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10258)


We consider a spectrum of properties proposed in [14], that is related to causality and concurrency between a pair of given transitions in a place/transition net. For each of these properties, we ask whether it can be verified using an ordinary, interleaving based, model checker. With a systematic approach based on two constructions, we reduce 75% of the properties in the spectrum to a reachability problem. We have to leave the remaining 25% as open problems.


Model Checker Business Process Management Reachability Graph Reachability Problem Firing Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory. Theoret. Comput. Sci. 55(1), 87–136 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Best, E., Fernandez, C.: Nonsequential Processes: A Petri Net View. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  3. 3.
    Brauer, W., Reisig, W.: Carl adam Petri and “Petri nets”. Fundam. Concepts Comput. Sci. 3, 129–139 (2009)CrossRefGoogle Scholar
  4. 4.
    Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Checking. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. 5.
    Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Inf. Control 57(2/3), 125–147 (1983)CrossRefzbMATHGoogle Scholar
  6. 6.
    Grahlmann, B.: The PEP tool. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 440–443. Springer, Heidelberg (1997). doi: 10.1007/3-540-63166-6_43 CrossRefGoogle Scholar
  7. 7.
    Heiner, M., Rohr, C., Schwarick, M., Tovchigrechko, A.A.: MARCIE’s secrets of efficient model checking. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 286–296. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53401-4_14 CrossRefGoogle Scholar
  8. 8.
    Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53401-4_16 CrossRefGoogle Scholar
  9. 9.
    Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use - EATCS Monographs in Theoretical Computer Science, vol. 1, 2nd edn. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Khomenko, V.: PUNF–Petri net unfolder.
  11. 11.
    McMillan, K.L.: A technique of state space search based on unfolding. Formal Methods Syst. Des. 6(1), 45–65 (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nielsens, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains. Theoret. Comput. Sci. 13(1), 85–108 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Petri, C.A.: Kommunikation mit Automaten. Dissertation, Schriften des IIM 2, Rheinisch-Westfälisches Institut für Instrumentelle Mathematik an der Universität Bonn, Bonn (1962)Google Scholar
  14. 14.
    Polyvyanyy, A., Weidlich, M., Conforti, R., Rosa, M., Hofstede, A.H.M.: The 4C spectrum of fundamental behavioral relations for concurrent systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210–232. Springer, Cham (2014). doi: 10.1007/978-3-319-07734-5_12 CrossRefGoogle Scholar
  15. 15.
    Schwoon, S.: Mole–a Petri net unfolder.
  16. 16.
    Hofstede, A.H.M., Ouyang, C., Rosa, M., Song, L., Wang, J., Polyvyanyy, A.: APQL: a process-model query language. In: Song, M., Wynn, M.T., Liu, J. (eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 23–38. Springer, Cham (2013). doi: 10.1007/978-3-319-02922-1_2 CrossRefGoogle Scholar
  17. 17.
    Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_20 Google Scholar
  18. 18.
    M. Weidlich. Behavioural profiles: a relational approach to behaviour consistency. Ph.D. thesis, University of Potsdam (2011)Google Scholar
  19. 19.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 224–238. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19835-9_19 CrossRefGoogle Scholar
  20. 20.
    Wolf, K.: Generating Petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73094-1_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut Für InformatikUniversität RostockRostockGermany

Personalised recommendations