Skip to main content

Quantitative Analyses of Morphological Data

Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Submarine morphologies are complex and analysed based on shapes, dimensions and internal variations. They are also analysed based on their surroundings. This chapter starts by comparing the sensors providing this information: most of them are based on remote sensing (acoustic/electromagnetic). They produce Digital Terrain Models (DTMs), corresponding to regularly sampled (and/or interpolated) grids. Illustrated with regular examples, the chapter shows the basic measurements used to describe and compare morphologic data, their variations with multi-scale approaches (e.g. Fourier space, fractals) and how this can be used to identify trends and patterns. Geographic Information Systems and the emerging applications of Artificial Intelligence and data mining are also presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Blondel P (ed) (2012) Bathymetry and its applications. In Tech. Open Access: http://www.intechopen.com/books/show/title/bathymetry-and-its-applications. doi:10.5772/2132

  • Blondel P, Pouliquen E (2004) Acoustic textures and detection of shipwreck cargo—example of a Roman ship near Elba, Italy. In: Akal T, Ballard RD, Bass GD (eds) Proceedings of first internal congress on the application of recent advances in underwater detection and survey techniques to underwater archaeology, pp 135–142

    Google Scholar 

  • Blondel P (2009) Handbook of sidescan sonar. Springer, Berlin

    CrossRef  Google Scholar 

  • Box G, Jenkins GM, Reinsel GC (2015) Time series analysis: forecasting and control, 4th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Campbell BA (2011) Radar remote sensing of planetary surfaces. Cambridge University Press, Cambridge

    Google Scholar 

  • François H, Lê S, Pagès J (2009) Exploratory multivariate analysis by example using R. CRC-Press, London

    Google Scholar 

  • Goff JA, Jordan TH (1989) Stochastic modelling of seafloor morphology: resolution of topographic parameters by sea beam data. IEEE J Oceanic Eng 14(4):326–337

    CrossRef  Google Scholar 

  • Goff JA, Malinverno A, Fornari DJ, Cochran JR (1993) Abyssal hill segmentation: quantitative analysis of the East Pacfic rise flanks 7°S–9°S. J Geophys Res 98(B8):13851–13862

    CrossRef  Google Scholar 

  • Gómez Sichi O, Blondel Ph, Grácia E, Dañobeitia JJ (2005) Quantitative textural analyses of TOBI sonar imagery along the Almería Canyon (Almería Margin, Alborán Sea, SE Spain). In: Hodgson DM, Flint SS (eds) Submarine slope systems: processes and products, vol 244. Geological Society Special Publication, London, pp 141–154

    Google Scholar 

  • Gvishiani A, Dubois JO (2002) Artificial intelligence and dynamic systems for geophysical applications. Springer, Berlin

    CrossRef  Google Scholar 

  • Ijjasz-Vasquez EJ, Rodriguez-Iturbe I, Bras RL (1992) On the multifractal characterization of river basins. Geomorphology 5(3):297–310

    CrossRef  Google Scholar 

  • Kelner M, Migeon S, Tric E, Couboulex F, Dano A, Lebourg T, Taboada A (2016) Frequency and triggering of small-scale submarine landslides on decadal timescales: analysis of 4D bathymetric data from the continental slope offshore Nice (France). Mar Geol 379:281–297

    CrossRef  Google Scholar 

  • Lecours V, Dolan MFJ, Micallef A, Lucieer VL (2016) A review of marine geomorphometry, the quantitative study of the seafloor. Hydrol Earth Syst Sci 20:3207–3244

    CrossRef  Google Scholar 

  • Lurton X (2010) An introduction to underwater acoustics—principles and applications. Springer, Heidelberg

    CrossRef  Google Scholar 

  • Lurton X, Lamarche G (eds) (2015) Backscatter measurements by seafloor‐mapping sonars. Guidelines and recommendations. http://geohab.org/wp‐content/uploads/2014/05/BSWG‐REPORT‐MAY2015.pdf. Accessed 24 Oct 2016

  • Malinverno A (1989) Segmentation of topographic profiles of the seafloor based on a self-affine model. IEEE J Oceanic Eng 14(4):348–359

    CrossRef  Google Scholar 

  • Mallat S (2016) Understanding deep convolutional networks. Phil Trans R Soc A 374:20150203. doi:10.1098/rsta.2015.0203

    CrossRef  Google Scholar 

  • Mandelbrot BB (1967) How long is the coast of Britain? Stat self-similarity and fractional dimension. Science 156(3775):636

    CrossRef  Google Scholar 

  • Mareschal J-C (1989) Fractal reconstruction of sea-floor topography. Pure Appl Geophys 151:197–210

    CrossRef  Google Scholar 

  • Micallef A, Le Bas TP, Huvenne VA, Blondel P, Hühnerbach V, Deidun A (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 39–40:14–26

    CrossRef  Google Scholar 

  • Mitchell NC (1996) Processing and analysis of Simrad multibeam sonar data. Mar Geophys Res 18:729–739

    CrossRef  Google Scholar 

  • Mitchell N (2016) Interactive comment on “Characterising the ocean frontier: a review of marine and coastal geomorphometry” by Lecours V et al. Hydrol Earth Syst Sci Discuss. doi:10.5194/hess-2016-73-RC1

    Google Scholar 

  • Mitchell NC, Huthnance JM (2007) Comparing the smooth, parabolic shapes of interfluves in continental slopes to predictions of diffusion transport models. Mar Geol 236:189–208

    CrossRef  Google Scholar 

  • Mueller J (1968) An introduction to the hydraulic and topographic sinuosity indexes (1). Ann Assoc Am Geogr 58(2):371–385

    CrossRef  Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94(B12):17465–17484

    CrossRef  Google Scholar 

  • Obelcz J, Brothers D, Chaytor J, ten Brink U, Ross SW, Brooke S (2014) Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin. Deep Sea Res II 104:106–119

    CrossRef  Google Scholar 

  • Planella Gonzalez LF, Gomez Pivel MA, Alcoba Ruiz DD (2013) Improving bathymetric images exploration: a data mining approach. Comput Geosci 54:142–147

    CrossRef  Google Scholar 

  • Pouliquen E, Blondel P, Canepa G, Hollett R (2002) Multi-sensor analysis of the seabed in shallow-water areas: overview of the MAPLE-2001 experiment. In: Proceedings of sixth European conference on underwater acoustics ECUA-2002, Gdansk, Poland, pp 167–175

    Google Scholar 

  • Rigol-Sanchez JP, Stuart N, Pulido-Bosch A (2015) ArcGeomorphometry: a toolbox for geomorphometric characterisation of DEMs in the ArcGIS environment. Comput Geosci 85:155–163

    CrossRef  Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5(1–4):23–27

    Google Scholar 

  • Shaw PR, Smith DK (1990) Robust description of statistically heterogeneous seafloor topography through its slope distribution. J Geophys Res 95(B6):8705–8722

    CrossRef  Google Scholar 

  • Shaw PR, Smith DK (1987) Statistical methods for describing seafloor topography. Geophys Res Lett 14:1061–1064

    CrossRef  Google Scholar 

  • Verfaillie E, Doornenbal P, Mitchell AJ, White J, Van Lancker V (2007) The bathymetric position index (BPI) as a support tool for habitat mapping. Worked example for the MESH Final Guidance, 14 pp. (http://www.emodnet-seabedhabitats.eu/PDF/GMHM4_Bathymetric_position_index_(BPI).pdf). Last accessed 06 Feb 2017

  • Wan S, Lei TC, Chou TY (2010) A novel data mining technique of analysis and classification for landslide problem. Nat Hazards 52:211. doi:10.1007/s11069-009-9366-3

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Blondel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Blondel, P. (2018). Quantitative Analyses of Morphological Data. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_5

Download citation