Skip to main content

Sidescan Sonar

Part of the Springer Geology book series (SPRINGERGEOL)


Sidescan sonar allows obtaining an acoustic image of the seafloor at high resolution, wide swath and relatively low cost. For that purpose the backscattered signal of an acoustic pulse sent out sideways from an instrument carrier is registered. At low incident angles small-scale relief is well imaged and the length of shadows allows calculation of the height of seafloor features but sidescan sonar is particularly useful in mapping compositional differences of the seafloor. Sidescan sonar images are, however, mostly uncalibrated and need some form of ground-truthing for meaningful geological interpretation. Interferometric sidescan sonar systems now also provide bathymetric information together with backscatter strength.


  • Sidescan Sonar
  • Seafloor
  • Backscattering Strength
  • Side-looking Sonar
  • Synthetic Aperture Sonar

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  • Bass GF (1968) New tool for undersea archaeology. Nat Geogr 134:403–423

    Google Scholar 

  • Belderson RH, Kenyon NH, Stride AH, Stubbs AR (1972) Sonographs of the sea floor. A picture atlas. Elsevier, Amsterdam

    Google Scholar 

  • Blackinton JG, Hussong DM, Kosalos JG (1983) First results from a combination of side-scan and seafloor mapping system (SeaMARC II). Proc Offshore Technol Conf OTC 4478:307–314

    Google Scholar 

  • Chesterman WD, Clynick PR, Stride AH (1958) An acoustic aid to sea bed survey. Acustica 8:185–290

    Google Scholar 

  • Clay CS, Ess J, Weisman I (1964) Lateral echo sounding of the ocean bottom on the continental rise. J Geophys Res 69:3823–3835

    CrossRef  Google Scholar 

  • De Moustier C (1988) State of the art in swath bathymetry survey systems. Int Hydro Rev LXV: 25–54

    Google Scholar 

  • EEZ-Scan 84 Scientific Staff (1986) Atlas of the U.S. Exclusive Economic Zone, Western Conterminous United States: U.S. Geological Survey Miscellaneous Investigations Series I-1792, scale 1:500,000, 152 pp

    Google Scholar 

  • EEZ-Scan 85 Scientific Staff (1987) Atlas of the U. S. Exclusive Economic Zone, Gulf of Mexico and Eastern Caribbean Areas: U. S. Geological Survey Miscellaneous Investigations I-1864-A, scale 1:500,00, 104 pp

    Google Scholar 

  • EEZ-Scan 87 Scientific Staff (1991) Atlas of the U. S. exclusive economic zone Atlantic continental margin: U. S. Geological Survey Miscellaneous Investigations Series I-2054, 174 pp

    Google Scholar 

  • Gardner JV, Field ME, Twichell DC (eds) (1996) Geology of the United States Seafloor: the view from GLORIA. Cambridge University Press, Cambridge, p 371

    Google Scholar 

  • Hackmann WD (1985) Seek and strike: sonar, anti-submarine warfare and the Royal Navy, 1914–54. Stationary Office Books, London, p 522

    Google Scholar 

  • Hagemann J (1958) Facsimile recording of sonic values of the ocean bottom. US Patent 4197591A. Accessed on 28 Apr 2016

  • Huggett QJ, Millard NW (1992) Towed ocean bottom instrument TOBI: a new deep-towed platform for side-scan sonar and other geophysical surveys. Offshore Technol Conf. doi:10.4043/6849-MS

  • Johnson HP, Helferty M (1990) The geological interpretation of sidescan sonar. Rev Geophys 28:357–380

    CrossRef  Google Scholar 

  • Klaucke I, Masson DG, Petersen CJ, Weinrebe W, Ranero CR (2008) Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: implications for the quantification of seep processes. G-cubed 9:Q04010. doi:10.1029/2007gc001708

    Google Scholar 

  • Kosalos JG, Chayes D (1983) A portable system for ocean bottom imaging and charting. OCEANS’83 proceedings, pp 619–656

    Google Scholar 

  • MIT museum. Accessed 26 Jul 2016

  • Rosencrantz DM, Klein M, Edgerton HE (1972) The use of sonar. In: Underwater archeology: a nascent discipline, Paris, pp 257–270

    Google Scholar 

  • Rusby S (1970) A long-range sidescan sonar for use in the deep sea (G.L.O.R.I.A. project). Int Hydrogr Rev 47:25–39

    Google Scholar 

  • Somers ML, Carson RM, Revie JA, Edge RH, Barrows BJ, Andrews AG (1978) GLORIA II—an improved long range sidescan sonar. In: Proceedings of the Institute of Electrical Engineering on Offshore Instrumentation and Communications, Oceanology International Technical Session J BPS Publications, London pp 16–24

    Google Scholar 

  • Tamsett D, McIlveny J, Watts A (2016) Colour sonar: multi-frequency sidescan sonar images of the seabed in the inner sound of the Pentland Firth, Scotland. J Mar Sci Eng 4:26. doi:10.3390/jmse4010026

  • Tucker MJ, Stubbs AR (1961) A narrow-beam echo-ranger for fishery and geological investigations. Brit J Appl Phys 12:103–110

    CrossRef  Google Scholar 

  • Wille PC (2005) Sound images of the ocean in research and monitoring. Springer, Heidelberg, p 471

    Google Scholar 

  • Zakharina M, Dybedal J (2007) The parametric sidescan sonar instrument and synthetic aperture sonar processing. In: Blondel P, Caiti A (eds) Buried waste in the seabed: acoustic imaging and biotoxicity (results from the European SITAR project). Springer, Heidelberg, pp 13–18

    CrossRef  Google Scholar 

Download references


Tim Le Bas is thanked for the critical reading of an earlier version of this chapter.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ingo Klaucke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Klaucke, I. (2018). Sidescan Sonar. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham.

Download citation