Skip to main content

Fishing Activities

  • Chapter
  • First Online:

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Unlike the major anthropogenic changes that terrestrial and coastal habitats underwent during the last centuries such as deforestation, river engineering, agricultural practices or urbanism, those occurring underwater are veiled from our eyes and have continued nearly unnoticed. Only recent advances in remote sensing and deep marine sampling technologies have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention among the scientific community, policy makers and the general public due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.

This is a preview of subscription content, log in via an institution.

References

  • ADF (2016) The Arbor Day Foundation Tree Database. Arbor Day Foundation, Lincoln, NE, USA

    Google Scholar 

  • Aller RC (1982) The effects of macrobenthos on chemical properties of marine sediments and overlying water. In: McCall PL, Tevesz MJS (eds) Animal sediment relations. Springer Science, pp 53–102

    Google Scholar 

  • Andersson K, Jonsson P (2003) En ROV-undersökning av trålspår i södra Östersjön. J R Swedish Agric For Acad 142:39–42

    Google Scholar 

  • Auster PJ, Malatesta RJ, Donaldson CLS (1997) Distributional responses to small-scale habitat variability by early juvenile silver hake, Merluccius bilinearis. Environ Biol Fishes 50:195–200. doi:10.1023/A:1007305628035

    Article  Google Scholar 

  • Baco AR, Rowden AA, Levin LA et al (2010) Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Mar Geol 272:251–259. doi:10.1016/j.margeo.2009.06.015

    Article  Google Scholar 

  • Barnes PW, Thomas JP (2005) Benthic habitats and effects of fishing. American Fisheries Society symposium

    Google Scholar 

  • Benn AR, Weaver PP, Billet DSM et al (2010) Human activities on the deep seafloor in the North East Atlantic: an assessment of spatial extent. PLoS ONE 5:e12730. doi:10.1371/journal.pone.0012730

    Article  Google Scholar 

  • Bennett F (1998) Effect of fishing gear on the sea floor of New England changes to the sea floor in the Chatham area. In: Dorsey EM, Pederson J (eds) Effect of fishing gear on the sea floor of New England. Conservation Law Foundation, Boston, pp 115–116

    Google Scholar 

  • Bhagirathan U, Meenakumari B, Jayalakshmy KV et al (2010) Impact of bottom trawling on sediment characteristics—a study along inshore waters off Veraval coast, India. Environ Monit Assess 160:355–369. doi:10.1007/s10661-008-0700-0

    Article  Google Scholar 

  • Black KP, Parry GD (1999) Entrainment, dispersal, and settlement of scallop dredge sediment plumes: field measurements and numerical modelling. Can J Fish Aquat Sci 56:2271–2281. doi:10.1139/f99-159

    Article  Google Scholar 

  • Black J, Tilney R (2015) Monitoring New Zealand’s trawl footprint for deepwater fisheries: 1989–90 to 2010–11. New Zeal Aquat Environ Biodivers Rep 142:1–56

    Google Scholar 

  • Bradshaw C, Tjensvoll I, Sköld M et al (2012) Bottom trawling resuspends sediment and releases bioavailable contaminants in a polluted fjord. Environ Pollut 170:232–241. doi:10.1016/j.envpol.2012.06.019

    Article  Google Scholar 

  • Brown EJ, Finney B, Dommisse M, Hills S (2005) Effects of commercial otter trawling on the physical environment of the southeastern Bering Sea. Cont Shelf Res 25:1281–1301. doi:10.1016/j.csr.2004.12.005

    Article  Google Scholar 

  • Bruno JF, Valdivia A (2016) Coral reef degradation is not correlated with local human population density. Sci Rep 6:29778. doi:10.1038/srep29778

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Caddy JF (1973) Underwater observations on tracks of dredges and trawls and some effects of dredging on a scallop ground. J Fish Res Board Canada 30:173–180. doi:10.1139/f73-032

    Article  Google Scholar 

  • Caddy JF (2000) Marine catchment basin effects versus impacts of fisheries on semi-enclosed seas. ICES J Mar Sci 57:628–640. doi:10.1006/jmsc.2000.0739

    Article  Google Scholar 

  • Cadée GC (2001) Sediment dynamics by bioturbating organisms. In: Ecological comparisons of sedimentary shores. Springer, Berlin, pp 127–148

    Google Scholar 

  • Chiocci FL, Chivas AR (eds) (2014) Continental shelves of the world: their evolution during the Last Glacio-Eustatic Cycle. Geological Society, London

    Google Scholar 

  • Churchill J (1989) The effect of commercial trawling on sediment resuspension and transport over the Middle Atlantic Bight continental shelf. Cont Shelf Res 9:841–864

    Article  Google Scholar 

  • Clark MR, Rowden AA, Schlacher T et al (2010) The ecology of seamounts: structure, function, and human impacts. Ann Rev Mar Sci 2:253–278. doi:10.1146/annurev-marine-120308-081109

    Article  Google Scholar 

  • Collie J, Escanero G, Valentine P (1997) Effects of bottom fishing on the benthic megafauna of Georges Bank. Mar Ecol Prog Ser 155:159–172. doi:10.3354/meps155159

    Article  Google Scholar 

  • Collie JS, Hall SJ, Kaiser MJ, Poiner IR (2000) A quantitative analysis of fishing impacts shelf-sea benthos. J Anim Ecol 69:785–798. doi:10.1046/j.1365-2656.2000.00434.x

    Article  Google Scholar 

  • CRG (2012) Fish trawling reshapes deep-sea canyons. CRG marine geosciences, University of Barcelona. In: Nat News. http://www.nature.com/news/fish-trawling-reshapes-deep-sea-canyons-1.11356

  • Crown (1989) Trawl door trials in the Moraz Firth—Marine Laboratory and Sea Fish Industry, Aberdeen

    Google Scholar 

  • Currie DR, Parry GD (1996) Effects of scallop dredging on a soft sediment community: a large-scale experimental study. Mar Ecol Prog Ser 134:131–150. doi:10.3354/meps134131

    Article  Google Scholar 

  • De Biasi AM (2004) Impact of experimental trawling on the benthic assemblage along the Tuscany coast (north Tyrrhenian Sea, Italy). ICES J Mar Sci 61:1260–1266. doi:10.1016/j.icesjms.2004.07.024

    Article  Google Scholar 

  • de Groot SJ (1984) The impact of bottom trawling on benthic fauna of the North Sea. Ocean Manag 9:177–190. doi:10.1016/0302-184X(84)90002-7

    Article  Google Scholar 

  • de Juan D, Thrush SF, Demestre M (2007) Functional changes as indicators of trawling disturbance on a benthic community located in a fishing ground (NW Mediterranean Sea). Mar Ecol Prog Ser 334:117–129

    Google Scholar 

  • De Leo FC, Gauthier M, Nephin J et al (2016) Bottom trawling and oxygen minimum zone influences on continental slope benthic community structure off Vancouver Island (NE Pacific). Deep Sea Res Part II Top Stud Oceanogr 1:1–30. doi:10.1016/j.dsr2.2016.11.014

    Google Scholar 

  • de Souza EN, Boerder K, Matwin S, Worm B (2016) Improving fishing pattern detection from satellite AIS using data mining and machine learning. PLoS ONE 11:e0158248. doi:10.1371/journal.pone.0158248

    Article  Google Scholar 

  • DeAlteris J, Skrobe L, Lipsky C (1999) The significance of seabed disturbance by mobile fishing gear relative to natural processes: a case study in Narragansett Bay, Rhode Island. In: Fish habitats: essential fish habitat and rehabilitation, pp 224–237

    Google Scholar 

  • DeAlteris JT, Skrobe LG, Castro KM (2000) Effects of mobile bottom fishing gear on biodiversity and habitat in offshore New England waters. Northeast Nat 7:379. doi:10.2307/3858519

    Article  Google Scholar 

  • Dellapenna TM, Allison MA, Gill GA et al (2006) The impact of shrimp trawling and associated sediment resuspension in mud dominated, shallow estuaries. Estuar Coast Shelf Sci 69:519–530. doi:10.1016/j.ecss.2006.04.024

  • DFO, Centre for Science Advice, Fisheries and Ocean Canada (2013) Identification and evaluation of biological effects and impacts of sediment to sponge communities in Hecate Strait. Can Sci Advis Secr Sci Advis Rep 1–11

    Google Scholar 

  • Diderot D, D’Alembert J (1771) “Pêches – Pêches de mer, pêches de rivière – Fabrique des filets [Planches I-XXVII],” Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, 8th edn, Paris

    Google Scholar 

  • Diesing M, Stephens D, Aldridge J (2013) A proposed method for assessing the extent of the seabed significantly affected by demersal fishing in the Greater North Sea. ICES J Mar Sci 70:1085–1096. doi:10.1093/icesjms/fst066

    Article  Google Scholar 

  • Dounas CG (2006) A new apparatus for the direct measurement of the effects of otter trawling on benthic nutrient releases. J Exp Mar Bio Ecol 339:251–259. doi:10.1016/j.jembe.2006.07.022

    Article  Google Scholar 

  • Dounas C, Davies I, Triantafyllou G et al (2007) Large-scale impacts of bottom trawling on shelf primary productivity. Cont Shelf Res 27:2198–2210. doi:10.1016/j.csr.2007.05.006

    Article  Google Scholar 

  • Duplisea DE, Jennings S, Malcolm SJ et al (2001) Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea. Geochem Trans 2:112. doi:10.1186/1467-4866-2-112

    Article  Google Scholar 

  • Durrieu de Madron X, Ferré B, Le Corre G et al (2005) Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont Shelf Res 25:2387–2409. doi:10.1016/j.csr.2005.08.002

    Article  Google Scholar 

  • Eastwood PD, Mills CM, Aldridge JN et al (2007) Human activities in UK offshore waters: an assessment of direct, physical pressure on the seabed. ICES J Mar Sci 64:453–463. doi:10.1093/icesjms/fsm001

    Article  Google Scholar 

  • Ellingsen KE (2002) Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Mar Ecol Prog Ser 232:15–27. doi:10.3354/meps232015

    Article  Google Scholar 

  • Eriksson PG, Condie KC, Tirsgaard H, Mueller WU, Altermann W, Miall AD, Aspler LB, Catuneanu O, Chiarenzelli JR (1998) Precambrian clastic sedimentation systems. Sediment Geol 120(1–4):5–53

    Google Scholar 

  • European Parliament (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off J Eur Union 1–22

    Google Scholar 

  • Fanning KA, Carder KL, Betzer PR (1982) Sediment resuspension by coastal waters: a potential mechanism for nutrient re-cycling on the ocean’s margins. Deep Sea Res Part A Oceanogr Res Pap 29:953–965. doi:10.1016/0198-0149(82)90020-6

  • FAO (2009) The state of world fisheries and aquaculture

    Google Scholar 

  • Ferré B, Durrieu de Madron X, Estournel C et al (2008) Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean. Application to the Gulf of Lion (NW Mediterranean). Cont Shelf Res 28:2071–2091. doi:10.1016/j.csr.2008.02.002

    Article  Google Scholar 

  • Floderus S, Pihl L (1990) Resuspension in the Kattegat: impact of variation in wind climate and fishery. Estuar Coast Shelf Sci 31:487–498. doi:10.1016/0272-7714(90)90039-T

    Article  Google Scholar 

  • Foden J, Rogers SI, Jones AP (2010) Recovery of UK seabed habitats from benthic fishing and aggregate extraction—towards a cumulative impact assessment. Marine Ecol Progress Ser 411:259–270. doi:10.3354/meps08662

  • Fosså JH (2013) Fishery impact—bottom trawling in Norwegian waters. In: Webpage Inst Mar Res. http://www.imr.no/coral/fishery_impact.php

  • Fosså JH, Mortensen PB, Furevik DM (2002) Hydrobiologia 471:1–12. doi:10.1023/A:1016504430684

  • Freese L, Auster P, Heifetz J, Wing B (1999) Effects of trawling on seafloor habitat and associated invertebrate taxa in the Gulf of Alaska. Mar Ecol Prog Ser 182:119–126

    Article  Google Scholar 

  • Freiwald A, Roberts JM (2005) Cold-water corals and ecosystems. Springer, Berlin

    Google Scholar 

  • Friedlander A, Boehlert G, Field M et al (1999) Sidescan-sonar mapping of benthic trawl marks on the shelf and slope off Eureka, California. Fish Bull 786–801

    Google Scholar 

  • Gerritsen HD, Minto C, Lordan C (2013) How much of the seabed is impacted by mobile fishing gear? Absolute estimates from Vessel Monitoring System (VMS) point data. ICES J Mar Sci 70:523–531. doi:10.1093/icesjms/fst017

    Article  Google Scholar 

  • Gray J, Poere G, Ugland K (1997) Coastal and deep-sea benthic diversities compared. Mar Ecol Prog Ser 159:97–103

    Article  Google Scholar 

  • Grieve C, Brady D, Polet H (2014) Review of habitat dependent impacts of mobile and static fishing gears that interact with the sea bed. Mar Steward Counc Sci Ser 2:18–88

    Google Scholar 

  • Hall-Spencer J (1999) The impact of Rapido trawling for scallops, Pecten jacobaeus(L.), on the benthos of the Gulf of Venice. ICES J Mar Sci 56:111–124. doi:10.1006/jmsc.1998.0424

  • Hall-Spencer J, Allain V, Fosså JH (2002) Trawling damage to Northeast Atlantic ancient coral reefs. Proc R Soc London B Biol Sci 269:507–511. doi:10.1098/rspb.2001.1910

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345

  • Hiddink JG, Rijnsdorp AD, Piet G (2008) Can bottom trawling disturbance increase food production for a commercial fish species? Can J Fish Aquat Sci 65:1393–1401. doi:10.1139/F08-064

    Article  Google Scholar 

  • Hilborn R, Jennings S, Rijnsdorp A et al (2014) Trawling: finding common ground on the scientific knowledge regarding best practices. Report of the third meeting of the Trawling Best Practices Study Committee. https://trawlingpractices.files.wordpress.com/2012/10/third-meeting-report.pdf

  • Hinz H, Prieto V, Kaiser MJ (2009) Trawl disturbance on benthic communities: chronic effects and experimental predictions. Ecol Appl 19:761–773

    Article  Google Scholar 

  • Hixon MA, Tissot BN (2007) Comparison of trawled vs untrawled mud seafloor assemblages of fishes and macroinvertebrates at Coquille Bank, Oregon. J Exp Mar Bio Ecol 344:23–34. doi:10.1016/j.jembe.2006.12.026

  • Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Hopkins CCE (2004) The dangers of bottom trawling in the Baltic Sea. A report for Coalition Clean Baltic. Aqua Mar Advis 1:1–14

    Google Scholar 

  • Horn L (2005) National Undersea Research Center—After bottom trawling photo. In: National Undersea Research Center. http://www.terranature.org/OculinaRubble.htm

  • Huettel M, Gust G (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar Ecol Prog Ser 89:253–267. doi:10.3354/meps089253

    Article  Google Scholar 

  • Hughes KM, Kaiser MJ, Jennings S et al (2014) Investigating the effects of mobile bottom fishing on benthic biota: a systematic review protocol. Environ Evid 3:23. doi:10.1186/2047-2382-3-23

    Article  Google Scholar 

  • Hulthe G, Hulth S, Hall POJ (1998) Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim Cosmochim Acta 62:1319–1328. doi:10.1016/S0016-7037(98)00044-1

    Article  Google Scholar 

  • Humborstad OB, Nøttestad L, Løkkeborg S, Rapp HT (2004) RoxAnn bottom classification system, sidescan sonar and video-sledge: spatial resolution and their use in assessing trawling impacts. ICES J Mar Sci 61:53–63. doi:10.1016/j.icesjms.2003.10.001

    Article  Google Scholar 

  • Humborstad OB, Jørgensen T, Grotmol S (2006) Exposure of cod Gadus morhua to resuspended sediment: an experimental study of the impact of bottom trawling. Mar Ecol Prog Ser 309:247–254. doi:10.3354/meps309247

    Article  Google Scholar 

  • ICES (1992) Report by the International Council for the Exploration of the Sea on ecosystem effects of fishing activities. ICES C 11:1–144

    Google Scholar 

  • ICES (2006) International Council for the Exploration of the Sea (ICES): report of the Working Group on Ecosystem Effects of Fishing Activities. ACE 05:1–179

    Google Scholar 

  • ICES (2015) Report of the Working Group on Spatial Fisheries Data (WGSFD), Copenhagen, Denmark

    Google Scholar 

  • Jennings S, Dinmore TA, Duplisea DE, Warr KJ, Lancaster JE (2001) Trawling disturbance can modify benthic production processes. J Anim Ecol 70(3):459–475

    Google Scholar 

  • Johnson K, Stevenson D, Reid R et al (2002) A review of national and international literature on the effects of fishing on benthic habitats. NOAA Tech Memo 57:1–72

    Google Scholar 

  • Jones JB (1992) Environmental impact of trawling on the seabed: a review. N Z J Mar Freshw Res 26:59–67

    Article  Google Scholar 

  • Jonsson HK (1967) Proceedings of the world scientific conference on the biology and culture of shrimps and prawns. FAO Fish Rep 57:77–587

    Google Scholar 

  • Jørgensen L (2013) Barents Sea South East—mother nature’s pantry. In: Mareano—Collect Mar Knowl. http://mareano.no/en/news/news_2013/barents_sea_south_east_mother_natures_pantry

  • Jumars PA., Nowell ARM (1984) Effects of benthos on sediment transport: difficulties with functional grouping. Cont Shelf Res 3:115–130. doi:10.1016/0278-4343(84)90002-5

  • Kaiser MJ, Spencer BE (1996) The effects of beam-trawl disturbance on infaunal communities in different habitats. J Anim Ecol 65:348. doi:10.2307/5881

    Article  Google Scholar 

  • Kaiser MJ, Clarke KR, Hinz H et al (2006) Global analysis of response and recovery of benthic biota to fishing. Mar Ecol Prog Ser 311:1–14. doi:10.3354/meps311001

    Article  Google Scholar 

  • Kaiser MJ, Collie JS, Hall SJ, Jennings S, Poiner IR (2002) Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fish 3(2):114–136

    Google Scholar 

  • Lambert G, Jennings S, Kaiser M et al (2011) Quantification and prediction of the impact of fishing on epifaunal communities. Mar Ecol Prog Ser 430:71–86. doi:10.3354/meps09112

    Article  Google Scholar 

  • Lambert GI, Jennings S, Hiddink JG et al (2012) Implications of using alternative methods of vessel monitoring system (VMS) data analysis to describe fishing activities and impacts. ICES J Mar Sci 69:682–693. doi:10.1093/icesjms/fss018

    Article  Google Scholar 

  • Linnane A, Ball B, Munday B et al (2000) A review of potential techniques to reduce the impact of demersal trawls. Irish Fish Investig 7:1–32

    Google Scholar 

  • Lokkeborg S (2005) Impacts of trawling and scallop dredging on benthic habitats and communities. FAO Fish Tech Pap 472:1–58

    Google Scholar 

  • Main J, Sangster G (1981) A study of the sand clouds produced by trawl boards and their possible effect on fish capture. Scottish Fish Res Rep Dep Agric Fish Scotland, Mar Lab Aberdeen 20:1–20

    Google Scholar 

  • Malik M, Mayer L (2007) Investigation of seabed fishing impacts on benthic structure using multi-beam sonar, sidescan sonar, and video. ICES J Mar Sci 1998:1053–1065

    Article  Google Scholar 

  • Martín J, Puig P, Palanques A et al (2008) Effect of commercial trawling on the deep sedimentation in a Mediterranean submarine canyon. Mar Geol 252:150–155. doi:10.1016/j.margeo.2008.03.012

    Article  Google Scholar 

  • Martín J, Puig P, Masqué P et al (2014a) Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon. PLoS ONE 9:e104536. doi:10.1371/journal.pone.0104536

    Article  Google Scholar 

  • Martín J, Puig P, Palanques A, Giamportone A (2014b) Commercial bottom trawling as a driver of sediment dynamics and deep seascape evolution in the Anthropocene. Anthropocene 7:1–15. doi:10.1016/j.ancene.2015.01.002

    Article  Google Scholar 

  • Martín J, Puig P, Palanques A, Ribó M (2014c) Trawling-induced daily sediment resuspension in the flank of a Mediterranean submarine canyon. Deep Res Part II Top Stud Oceanogr 104:174–183. doi:10.1016/j.dsr2.2013.05.036

    Article  Google Scholar 

  • Mayer LM, Schick DF, Findlay RH, Rice DL (1991) Effects of commercial dragging on sedimentary organic matter. Mar Environ Res 31:249–261. doi:10.1016/0141-1136(91)90015-Z

    Article  Google Scholar 

  • Mengual B, Cayocca F, Le Hir P et al (2016) Influence of bottom trawling on sediment resuspension in the “Grande-Vasière” area (Bay of Biscay, France). Ocean Dyn 66:1181–1207. doi:10.1007/s10236-016-0974-7

    Article  Google Scholar 

  • Montaigne F, Skerry B (2007) Das Drama im Meer. In: Natl Geogr Mag. http://www.nationalgeographic.de/reportagen/das-drama-im-meer

  • Morato T, Watson R, Pitcher TJ, Pauly D (2006) Fishing down the deep. Fish Fish 7:24–34. doi:10.1111/j.1467-2979.2006.00205.x

    Article  Google Scholar 

  • Mortensen PB, Hovland T, Fosså JH, Furevik DM (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK 81:581–597. doi:10.1017/S002531540100426X

    Article  Google Scholar 

  • Murawski S, Wigley S, Fogarty M et al (2005) Effort distribution and catch patterns adjacent to temperate MPAs. ICES J Mar Sci 1167:1150–1167. doi:10.1016/j.icesjms.2005.04.005

    Google Scholar 

  • Nakamoura E, Ourakami T (1900) Histoire de l’ industrie de la pêche maritime et fluviale ou Japon. (Translated from the Japanese into French). Bureau des produits maritimes et fleuviaux du ministère d’agriculture et commerce, Tokyo

    Google Scholar 

  • Nittrouer CA, Austin JA, Field ME et al (2007) Continental margin sedimentation: from sediment transport to sequence stratigraphy. Blackwell, Oxford, UK

    Book  Google Scholar 

  • NIWA (2010) The Ocean survey 20/20. In: New Zealand Gov Initiat. http://www.os2020.org.nz/

  • NOAA (2010) Fishery closure boundary as of 6 pm Eastern Time 21 June 2010 due to the Deepwater Horizon oil spill, extending from Atchafalaya Bay, Louisiana to Panama City, Florida. In: Natl Ocean Atmos Adm News. http://www.noaa.gov/deepwaterhorizon/

  • NRC (2002) (National Research Council) Effects of trawling and dredging on seafloor habitat. National Academies Press, Washington, DC

    Google Scholar 

  • O’Neill FG, Ivanović A (2016) The physical impact of towed demersal fishing gears on soft sediments. ICES J Mar Sci J du Cons 73:i5–i14. doi:10.1093/icesjms/fsv125

    Article  Google Scholar 

  • O’Neill FG, Summerbell K (2011) The mobilisation of sediment by demersal otter trawls. Mar Pollut Bull 62:1088–1097. doi:10.1016/j.marpolbul.2011.01.038

    Article  Google Scholar 

  • O’Neill FG, Summerbell KJ (2016) The hydrodynamic drag and the mobilisation of sediment into the water column of towed fishing gear components. J Mar Syst 164:76–84. doi:10.1016/j.jmarsys.2016.08.008

    Article  Google Scholar 

  • O’Neill FG, Simmons SM, Parsons DR et al (2013) Monitoring the generation and evolution of the sediment plume behind towed fishing gears using a multibeam echosounder. ICES J Mar Sci 70:892–903. doi:10.1093/icesjms/fst051

    Article  Google Scholar 

  • Oberle FKJ, Hanebuth TJJ, Baasch B, Schwenk T (2014a) Volumetric budget calculation of sediment and carbon storage and export for a late Holocene mid-shelf mudbelt system (NW Iberia). Cont Shelf Res 76:12–24. doi:10.1016/j.csr.2013.12.012

    Article  Google Scholar 

  • Oberle FKJ, Storlazzi CD, Hanebuth TJJ (2014b) Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia). J Mar Syst 139:362–372. doi:10.1016/j.jmarsys.2014.07.018

    Article  Google Scholar 

  • Oberle FKJ, Storlazzi CD, Hanebuth TJJ (2016a) What a drag: quantifying the global impact of chronic bottom trawling on continental shelf sediment. J Mar Syst 159:109–119. doi:10.1016/j.jmarsys.2015.12.007

    Article  Google Scholar 

  • Oberle FKJ, Swarzenski PW, Reddy CM et al (2016b) Deciphering the lithological consequences of bottom trawling to sedimentary habitats on the shelf. J Mar Syst 159:120–131. doi:10.1016/j.jmarsys.2015.12.008

    Article  Google Scholar 

  • Ocean Networks Canada (2012) Digital fishers: new mission. In: Ocean Networks Canada. http://www.oceannetworks.ca/digital-fishers-new-mission

  • Olsgard F, Schaanning MT, Widdicombe S et al (2008) Effects of bottom trawling on ecosystem functioning. J Exp Mar Bio Ecol 366:123–133. doi:10.1016/j.jembe.2008.07.036

    Article  Google Scholar 

  • Palanques A, Guillén J, Puig P (2001) Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol Oceanogr 46:1100–1110

    Article  Google Scholar 

  • Palanques A, Martín J, Puig P et al (2006) Evidence of sediment gravity flows induced by trawling in the Palamós (Fonera) submarine canyon (northwestern Mediterranean). Deep Sea Res Part I Oceanogr Res Pap 53:201–214. doi:10.1016/j.dsr.2005.10.003

    Article  Google Scholar 

  • Palanques A, Puig P, Guillén J et al (2014) Effects of bottom trawling on the Ebro continental shelf sedimentary system (NW Mediterranean). Cont Shelf Res 72:83–98. doi:10.1016/j.csr.2013.10.008

    Article  Google Scholar 

  • Pauly D, Christensen V, Guénette S et al (2002) Towards sustainability in world fisheries. Nature 418:689–695. doi:10.1038/nature01017

    Article  Google Scholar 

  • Percival P (2004) Impacts of trawl fisheries on marine benthic biogeochemistry. PhD thesis, University of Newcastle

    Google Scholar 

  • Piet GJ, Hintzen NT (2012) Indicators of fishing pressure and seafloor integrity. ICES J Mar Sci 69:1850–1858. doi:10.1093/icesjms/fss162

    Article  Google Scholar 

  • Piet GJ, Quirijns FJ (2009) The importance of scale for fishing impact estimations. Can J Fish Aquat Sci 66:829–835. doi:10.1139/F09-042

    Article  Google Scholar 

  • Pilskaln C, Churchill J, Mayer L (1998) Resuspension of sediment by bottom trawling in the Gulf of Maine and potential geochemical consequences. Conserv Biol 12:1223–1229

    Article  Google Scholar 

  • Pitcher TJ, Hart PJB, Clark MR, Santos RS (2007) Seamounts: ecology, fisheries & conservation. Blackwell, Amsterdam

    Book  Google Scholar 

  • Pitcher CR, Burridge CY, Wassenberg TJ et al (2009) A large scale BACI experiment to test the effects of prawn trawling on seabed biota in a closed area of the Great Barrier Reef Marine Park, Australia. Fish Res 99:168–183. doi:10.1016/j.fishres.2009.05.017

    Article  Google Scholar 

  • Prantoni A, Lana P, Sandrini-Neto L et al (2013) An experimental evaluation of the short-term effects of trawling on infaunal assemblages of the coast off southern Brazil. J Mar Biol Assoc U K 93:495–502. doi:10.1017/S002531541200029X

    Article  Google Scholar 

  • Puig P, Canals M, Company JB et al (2012) Ploughing the deep sea floor. Nature 489:286–289. doi:10.1038/nature11410

    Article  Google Scholar 

  • Puig P, Martín J, Masqué P, Palanques A (2015) Increasing sediment accumulation rates in La Fonera (Palamós) submarine canyon axis and their relationship with bottom trawling activities. Geophys Res Lett 42:8106–8113. doi:10.1002/2015GL065052

    Article  Google Scholar 

  • Punzón A, Trujillo V, Castro J et al (2009) Closed area management taken after the “Prestige” oil spill: effects on industrial fisheries. Mar Biodivers Rec. doi:10.1017/S1755267209000517

    Google Scholar 

  • Pusceddu A, Bianchelli S, Martín J et al (2014) Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc Natl Acad Sci U S A 111:1–6. doi:10.1073/pnas.1405454111

    Article  Google Scholar 

  • Queirós AM, Hiddink JG, Kaiser MJ, Hinz H (2006) Effects of chronic bottom trawling disturbance on benthic biomass, production and size spectra in different habitats. J Exp Mar Biol Ecol 335(1):91–103

    Google Scholar 

  • Reise K (1982) Long-term changes in the macrobenthic invertebrate fauna of the Wadden Sea: are polychaetes about to take over? Neth J Sea Res 16:29–36

    Google Scholar 

  • Rester JK (2000) Annotated bibliography of fishing impacts on habitat. Gulf States Mar Fish Comm 178

    Google Scholar 

  • Roberts C (2007) The unnatural history of the sea. Island Press

    Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547

    Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406. doi:10.1002/iroh.199900032

    Article  Google Scholar 

  • Sainsbury JC (1996) Commercial fishing methods: an introduction to vessels and gears, 3rd edn. Fishing News Books, Oxford, UK

    Google Scholar 

  • Schwinghamer P, Guigné JY, Siu WC (1996) Quantifying the impact of trawling on benthic habitat structure using high resolution acoustics and chaos theory. Can J Fish Aquat Sci 296:288–296

    Article  Google Scholar 

  • Schwinghamer P, Gordon DC, Rowell TW et al (1998) Effects of experimental otter trawling on surficial sediment properties of a sandy-bottom ecosystem on the Grand Banks of Newfoundland. Conserv Biol 12:1215–1222. doi:10.1046/j.1523-1739.1998.0120061215.x

    Article  Google Scholar 

  • Simpson A, Watling L (2006) An investigation of the cumulative impacts of shrimp trawling on mud-bottom fishing grounds in the Gulf of Maine: effects on habitat and macrofaunal community structure. ICES J Mar Sci 63:1616–1630. doi:10.1016/j.icesjms.2006.07.008

    Article  Google Scholar 

  • Skaar KL, Jorgensen T, Ulvestad BKH, Engas A (2011) Accuracy of VMS data from Norwegian demersal stern trawlers for estimating trawled areas in the Barents Sea. ICES J Mar Sci 68:1615–1620. doi:10.1093/icesjms/fsr091

    Article  Google Scholar 

  • Smith C (2000) Impact of otter trawling on an eastern Mediterranean commercial trawl fishing ground. ICES J Mar Sci 57(5):1340–1351

    Google Scholar 

  • Smith CJ, Banks AC, Papadopoulou K-N (2007) Improving the quantitative estimation of trawling impacts from sidescan-sonar and underwater-video imagery. ICES J Mar Sci 64:1692–1701. doi:10.1093/icesjms/fsm165

    Article  Google Scholar 

  • Smolowitz R (1998) Bottom tending gear used in New England. In: Dorsey EM, Pederson J (eds) Effects of fishing gear on the sea floor of New England. Conservation Law Foundation, Boston, MA

    Google Scholar 

  • Snelgrove PVR (1999) Getting to the bottom of marine biodiversity: sedimentary habitats. Bioscience 49:129–138. doi:10.2307/1313538

    Article  Google Scholar 

  • Snelgrove PVR, Thrush SF, Wall DH, Norkko A (2014) Real world biodiversity-ecosystem functioning: a seafloor perspective. Trends Ecol Evol 29:398–405. doi:10.1016/j.tree.2014.05.002

    Article  Google Scholar 

  • Stelzenmuller V, Rogers SI, Mills CM (2008) Spatio-temporal patterns of fishing pressure on UK marine landscapes, and their implications for spatial planning and management. ICES J Mar Sci 65:1081–1091. doi:10.1093/icesjms/fsn073

    Article  Google Scholar 

  • Tadashino K (2016) 日本漁具・漁法図説 (translation: Japanese Fishing Gear). Seizando-Shoten Publishing, Tokyo

    Google Scholar 

  • Thrush SF, Dayton PK (2002) Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu Rev Ecol Syst 33:449–473. doi:10.1146/annurev.ecolsys.33.010802.150515

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Cummings VJ, Dayton PK (1995) The impact of habitat disturbance by scallop dredging on marine benthic communities: what can be predicted from the results of experiments? Mar Ecol Prog Ser 129:141–150

    Article  Google Scholar 

  • Thrush S, Hewitt J, Funnell G, Cummings V (2001) Fishing disturbance and marine biodiversity: role of habitat structure in simple soft-sediment systems. Mar Ecol Prog Ser 221:255–264

    Article  Google Scholar 

  • Thurstan RH, Brockington S, Roberts CM (2010) The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat Commun 1:15. doi:10.1038/ncomms1013

    Article  Google Scholar 

  • Tillin HM, Hiddink JG, Jennings S, Kaiser MJ (2006) Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar Ecol Prog Ser 318:31–45. doi:10.3354/meps318031

    Article  Google Scholar 

  • Trimmer M, Petersen J, Sivyer D (2005) Impact of long-term benthic trawl disturbance on sediment sorting and biogeochemistry in the southern North Sea. Mar Ecol Prog Ser 298:79–94

    Article  Google Scholar 

  • Tuck ID, Hall SJ, Robertson MR et al (1998) Effects of physical trawling disturbance in a previously unfished sheltered Scottish sea loch. Mar Ecol Prog Ser 162:227–242. doi:10.3354/meps162227

    Article  Google Scholar 

  • USDA Farm Service Agency via Google Earth and SkyTruth (2008) Impacts of fishing: sediment plumes from bottom trawling. In: Satel Image Compil. https://www.flickr.com/photos/skytruth/sets/72157613362420565/

  • Valdemarsen JW, Jorgensen T, Engas A (2007) Options to mitigate bottom habitat impact of dragged gears. FAO Fish Tech Pap 506:1–43

    Google Scholar 

  • Vinson M (2013) Film of USGS fish trawling in Lake Superior. https://www.youtube.com/watch?v=CqW43SKJefI

  • von Brandt (2005) Fish catching methods of the world, 4th edn. Wiley-Blackwell, London, UK

    Google Scholar 

  • Waller R (2013) Ideas and insight from explorers. In: Natl Geogr Mag. http://voices.nationalgeographic.com/2013/06/24/clear-cutting-the-seafloor/

  • Watling L, Norse EA (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv Biol 12:1180–1197. doi:10.1046/j.1523-1739.1998.0120061180.x

    Article  Google Scholar 

  • Watling L, Hoofd M, Boulanger M et al (2014) The bottom line on bottom trawling: How much more science do we need? ICES symposium effects of fishing on benthic fauna, habitat and ecosystem function, pp 2–3

    Google Scholar 

  • Watson R, Revenga C, Kura Y (2006) Fishing gear associated with global marine catches. Fish Res 79:103–111. doi:10.1016/j.fishres.2006.01.013

    Article  Google Scholar 

  • Wilkinson C (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, Australia

    Google Scholar 

  • Williams A, Althaus F, Mike F et al (2011) Bottom fishery impact assessment. Aust Rep South Pacific Reg Fish Manag Organ 1–86

    Google Scholar 

  • Wilson AM, Kiriakoulakis K, Raine R, Gerritsen HD, Blackbird S, Allcock AL, White M (2015) Anthropogenic influence on sediment transport in the Whittard Canyon, NE Atlantic. Mar Pollut Bull 101(1):320–329

    Google Scholar 

  • Witkin T, Reyer A, Savitz J (2016) Global fishing watch reveals a fisheries management success in the Phoenix Islands. Ocean Rep 1–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand K. J. Oberle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oberle, F.K.J., Puig, P., Martín, J. (2018). Fishing Activities. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_25

Download citation

Publish with us

Policies and ethics