Skip to main content

Submarine Canyons and Gullies

Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Submarine canyons are deep incisions observed along most of the world’s continental margins. Their topographic relief is as dramatic as that of any canyon or river valley on land but is hidden beneath the surface of the ocean. Our knowledge of canyons has therefore come primarily from remote sensing and sampling, and has involved contributions from various oceanographic disciplines. Canyons are a critical link between coastal and shelf waters and abyssal depths; water masses, sediment, nutrients, and even litter and pollutants are carried through them. Advances in technology continue to provide new insights into canyon environments by pushing the frontier of deep marine observations and measurements. In this chapter we describe the main geomorphic features of submarine canyons and what is known about their formation and the processes that shape them. We also consider submarine gullies, which are small valleys commonly found within or alongside submarine canyons on the continental slope and may represent an incipient stage of canyon development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Amaro T, Huvenne VAI, Allcock AL et al (2016) The Whittard Canyon—a case study of submarine canyon processes. Prog Oceanogr 146:38–57

    CrossRef  Google Scholar 

  • Amblas D, Gerber TP, Canals M et al (2011) Transient erosion in the Valencia Trough turbidite systems, NW Mediterranean Basin. Geomorphology 130:173–184

    CrossRef  Google Scholar 

  • Amblas D, Gerber TP, De Mol B et al (2012) Survival of a submarine canyon during long-term outbuilding of a continental margin. Geology 40(6):543–546

    CrossRef  Google Scholar 

  • Amblas D, Canals M, Gerber TP (2015) The long-term evolution of submarine canyons: insights from the NW Mediterranean. CIESM Monogr 47:171–181

    Google Scholar 

  • Bagnold RA (1962) Autosuspension of transported sediment: turbidity currents. Proc R Soc Lond Ser A 265:315–319

    CrossRef  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF et al (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geodesy 32:355–371

    CrossRef  Google Scholar 

  • Bertoni C, Cartwright J (2005) 3D seismic analysis of slope-confined canyons from the Plio-Pleistocene of the ebro continental margin (Western Mediterranean). Basin Res 17:43–62

    CrossRef  Google Scholar 

  • Blum P, Okamura Y (1992) Pre-holocene sediment dispersal systems and effects of structural controls and holocene sea-level rise from acoustic facies analysis: SW Japan forearc. Mar Geol 108(3):295–322

    CrossRef  Google Scholar 

  • Brothers DS, ten Brink US, Andrews BD et al (2013) Geomorphic process fingerprints in submarine canyons. Mar Geol 337:53–66

    CrossRef  Google Scholar 

  • Bucher WH (1940a) Origin of the submarine valleys on the continental slopes of the North Atlantic. Nature 146(3699):407–408

    CrossRef  Google Scholar 

  • Bucher WH (1940b) Submarine valleys and the related geologic problems of the North Atlantic. Geol Soc Am Bull 51:489–512

    CrossRef  Google Scholar 

  • Cameron GDM, King EL, Todd BJ (2016) A large, glacially modified shelf-edge canyon, scotian shelf, Atlantic Canada. In: Dowdeswell JA, Canals M, Jakobsson M, Todd BJ, Dowdeswell EK, Hogan KA (eds) Atlas of submarine glacial landforms: modern, quaternary and ancient, vol 46. Geological Society, London, pp 403–404

    Google Scholar 

  • Canals M, Puig P, Heussner S et al (2006) Flushing submarine canyons. Nature 444:354–357

    CrossRef  Google Scholar 

  • Canals M, Company JB, Martin D et al (2013) Integrated study of Mediterranean deep canyons: novel results and future challenges. Prog Oceanogr 118:1–27

    CrossRef  Google Scholar 

  • Carter L, Milliman JD, Talling PJ et al (2012) Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan. Geophys Res Lett 39:L12603

    CrossRef  Google Scholar 

  • Casalbore D, Bosman A, Chiocci FL (2012) Study of recent small-scale landslides in geologically active marine areas through repeated multibeam surveys: examples from the southern Italy. In: Yamada Y et al (eds) Submarine mass movements and their consequences, vol 31. Advances in natural and technological hazards research. Springer, Dordrecht, pp 573–582

    CrossRef  Google Scholar 

  • Casalbore D, Bosman A, Ridente D et al (2014) Coastal and submarine landslides in the tectonically-active Tyrrhenian Calabrian margin (Southern Italy): examples and geohazard implications. In: Krastel S et al (eds) Submarine mass movements and their consequences, vol 37. Advances in natural and technological hazards research. Springer, Heidelberg, pp 261–269

    CrossRef  Google Scholar 

  • Casas D, Chiocci F, Casalbore D, et al (2016) Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea). Geo-Marine Letters, in press

    Google Scholar 

  • Ceramicola S, Praeg D, Coste M et al (2014) Submarine mass-movements in the Ionian Calabrian margin and their consequences for marine geohazards. In: Krastel S et al (eds) Submarine mass movements and their consequences, vol 37. Advances in natural and technological hazards research. Springer, Heidelberg, pp 295–306

    CrossRef  Google Scholar 

  • Ceramicola S, Amaro T, Amblas D et al (2015) Submarine canyon dynamics in the Mediterranean and Black seas, an integrated geological, oceanographic and ecosystems perspective. Briand F, Castaldi A (eds) CIESM workshop monograph, vol 47. Sorrento, pp 7–20

    Google Scholar 

  • Chiang CS, Yu H-S (2006) Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology 80:199–213

    CrossRef  Google Scholar 

  • Covault JA (2011) Submarine fans and canyon-channel systems: a review of processes, products, and models. Nat Educ Knowl 3(10):4

    Google Scholar 

  • Covault JA, Normark WR, Romans BW, Graham SA (2007) Highstand fans in the California borderland: the overlooked deep-water depositional system. Geology 35:783–786

    CrossRef  Google Scholar 

  • Daly RA (1936) Origin of submarine “canyons”. Am J Sci 31:401–420

    Google Scholar 

  • Dana JD (1863) Manual of geology, treating of the principles of the science with special reference to American geological history. Philadelphia, 798 pp

    Google Scholar 

  • Farre JA, McGregor BA, Ryan WBF et al (1983) Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution. SEPM Spec Publ 33:25–39

    Google Scholar 

  • Fernandez-Arcaya U, Ramirez-Llodra E, Aguzzi J et al (2016) Ecological role of submarine canyons and need for canyon conservation: a review. Front Mar Sci 4:5. doi: 10.3389/fmars.2017.00005

  • Forde EB (1981) Evolution of Veatch, Washington, and Norfolk submarine canyons—inferences from strata and morphology. Mar Geol 39:197–214

    CrossRef  Google Scholar 

  • Friedrichs CT, Wright LD (2004) Gravity-driven sediment transport on the continental shelf: implications for equilibrium profiles near river mouths. Coast Eng 51:795–811

    CrossRef  Google Scholar 

  • Fukushima Y, Parker G, Pantin HM (1985) Prediction of ignitive turbidity currents in Scripps submarine canyon. Mar Geol 67:55–81

    CrossRef  Google Scholar 

  • Gerber TP, Amblas D, Wolinsky MA et al (2009) A model for the long-profile shape of submarine canyons. J Geophys Res Earth Surf 114:f03002

    CrossRef  Google Scholar 

  • Greene HG, Maher N, Paull CK (2002) Physiography of the monterey bay national marine sanctuary and implications about continental margin development. Mar Geol 181:55–62

    CrossRef  Google Scholar 

  • Haq BU (1991) Sequence stratigraphy, sea-level change, and significance for the deep sea. Spec Publ Int Assoc Sedimentol 12:3–39

    Google Scholar 

  • Harris PT, Whiteway T (2011) Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Mar Geol 285:69–86

    CrossRef  Google Scholar 

  • Harris PT, MacMillan-Lawler M, Rupp J et al (2014) Geomorphology of the oceans. Mar Geol 352:4–24

    CrossRef  Google Scholar 

  • Hays JD, Pitman WC III (1973) Lithospheric plate motion, sea level changes and climatic and ecological consequences. Nature 246:18–22

    CrossRef  Google Scholar 

  • Huang Z, Nichol SL, Harris PT et al (2014) Classification of submarine canyons of the Australian continental margin. Mar Geol 357:362–383

    CrossRef  Google Scholar 

  • Huvenne VAI, Davies JS (2014) Towards a new and integrated approach to sub-marine canyon research. Deep-Sea Res II 104:1–5

    CrossRef  Google Scholar 

  • Huvenne VAI, Tyler PA, Masson DG et al (2011) A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon. PLoS ONE 6:e28755

    CrossRef  Google Scholar 

  • Huvenne VAI, Georgiopulou A, Chaumillon L et al (2016) Novel method to map the morphology of submarine landslide headwall scarps using remotely operated vehicles. Springer International Publishing Switzerland 2016. In: Lamarche G et al (eds) Submarine mass movements and their consequences, vol 41. Advances in natural and technological hazards research. Springer, Heidelberg, pp 135–144

    Google Scholar 

  • Iglesias O, Lastras G, Souto C et al (2014) Effects of coastal submarine canyons on tsunami propagation and impact. Mar Geol 350:39–51

    CrossRef  Google Scholar 

  • Imbrie J, Imbrie KP (1979) Ice ages: solving the mystery. MacMillan, New York 224 pp

    CrossRef  Google Scholar 

  • Imran J, Parker G, Katapodes N (1998) A numerical model of channel inception on submarine fans. J Geophys Res 103:1219–1238

    CrossRef  Google Scholar 

  • Ioualalen M, Migeon S, Sardoux O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 october 16 Nice international airport submarine landslide and of identified geological mass failures. Geophys J Int 181:724–740

    Google Scholar 

  • Izumi N (2004) The formation of submarine gullies by turbidity currents. J Geophys Res 109:C03050

    CrossRef  Google Scholar 

  • Jobe ZR, Lowe DR, Uchytil S (2011) Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Mar Pet Geol 28:843–860

    CrossRef  Google Scholar 

  • Kuenen PhH (1937) Experiments in connection with Daly’s hypothesis on the formation of submarine canyons. Leidse Geol Mededel 8:327–335

    Google Scholar 

  • Lai SYJ, Gerber TP, Amblas D (2016) An experimental approach to submarine canyon evolution. Geophys Res Lett 43:1–7

    CrossRef  Google Scholar 

  • Lastras G, Canals M, Urgeles R et al (2007) A walk down the Cap de Creus canyon, NW Mediterranean Sea: recent processes inferred from morphology and sediment bedforms. Mar Geol 246:176–192

    CrossRef  Google Scholar 

  • Lastras G, Acosta J, Muñoz A et al (2011a) Submarine canyon formation and evolution in the Argentine Continental Margin between 44º30′S and 48ºS. Geomorphology 128(3–4):116–136

    CrossRef  Google Scholar 

  • Lastras G, Canals M, Amblas D et al (2011b) Understanding sediment dynamics of two large submarine valleys from seafloor data: Blanes and La Fonera canyons, northwestern Mediterranean Sea. Mar Geol 280(1–4):20–39

    CrossRef  Google Scholar 

  • Laursen J, Normark WR (2002) Late quaternary evolution of the San Antonio submarine canyon in the central Chile forearc (∼33°S). Mar Geol 188(3–4):365–390

    CrossRef  Google Scholar 

  • Lo Iacono C, Sulli A, Agate M (2014) Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): variability in morphology, sedimentary processes and evolution on a tectonically active margin. Deep-Sea Res II 104:93–105

    CrossRef  Google Scholar 

  • Lombo Tombo S, Dennielou B, Berné S et al (2015) Sea-level control on turbidite activity in the Rhone canyon and the upper fan during the last glacial maximum and early deglacial. Sed Geol 323:148–166

    CrossRef  Google Scholar 

  • Martín J, Puig P, Palanques A, Ribó M (2014a) Trawling-induced daily sediment resuspension in the flank of a Mediterranean submarine canyon. Deep Sea Research II 104:174–183

    CrossRef  Google Scholar 

  • Martín J, Puig P, Masqué P et al (2014b) Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon. PLoS ONE 9(8):e104536

    CrossRef  Google Scholar 

  • McGregor B, Stubblefield WL, Ryan WBF et al (1982) Wilmington submarine canyon: a marine fluvial-like system. Geology 10(1):27–30

    CrossRef  Google Scholar 

  • Micallef A, Ribó M, Canals M et al (2014a) Space-for-time substitution and the evolution of a submarine canyon–channel system in a passive progradational margin. Geomorphology 221:34–50

    CrossRef  Google Scholar 

  • Micallef A, Mountjoy J, Barnes PM et al (2014b) Geomorphic response of submarine canyons to tectonic activity: Insights from the Cook Strait canyon system. N Z Geosphere 10(5):905–929

    CrossRef  Google Scholar 

  • Migeon S, Cattaneo A, Hassoun V et al (2011) Morphology, distribution and origin of recent submarine landslides of the Ligurian margin (North-western Mediterranean): some insights into geohazard assessment. Mar Geophys Res 32:225–243

    CrossRef  Google Scholar 

  • Mitchell NC (2005) Interpreting long-profiles of canyons in the USA Atlantic continental slope. Mar Geol 214:75–99

    CrossRef  Google Scholar 

  • Mitchell NC (2006) Morphologies of knickpoints in submarine canyons. GSA Bull 118:589–605

    CrossRef  Google Scholar 

  • Mohrig D, Marr JG (2003) Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments. Mar Pet Geol 20:883–899

    CrossRef  Google Scholar 

  • Mountjoy JJ, Barnes PM, Pettinga JR (2009) Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi margin. N Z Mar Geol 260(1–4):45–68

    CrossRef  Google Scholar 

  • Mulder T, Syvitski JPM (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J Geol 103:285–299

    CrossRef  Google Scholar 

  • Neuendorf KKE, Mehl JP Jr, Jackson JA (2005) Glossary of geology. American Geological Institute, Alexandria, p 382

    Google Scholar 

  • Noda A, Tuzino T, Furukawa R et al (2008) Physiographical and sedimentological characteristics of submarine canyons developed upon an active forearc slope: the Kushiro submarine canyon, northern Japan. Geol Soc Am Bull 120(5/3):750–767

    CrossRef  Google Scholar 

  • Normark WR, Carlson PR (2003) Giant submarine canyons: is size any clue to their importance in the rock record? Geol Soc Am Spec Pap 370:175–190

    Google Scholar 

  • Ogston AS, Drexler TM, Puig P (2008) Sediment delivery, resuspension, and transport in two contrasting canyon environments in the southwest Gulf of Lions. Cont Shelf Res 28(15):2000–2016

    CrossRef  Google Scholar 

  • Orange DL, Breen NA (1992) The effects of fluid escape on accretionary wedges 2. Seepage force, slope failure, headless submarine canyons, and vents. J Geophys Res 97:9277–9295

    CrossRef  Google Scholar 

  • Pantin HM (1979) Interaction between velocity and effective density in turbidity flow: phase-plane analysis, with criteria for auto-suspension. Mar Geol 31:59–99

    CrossRef  Google Scholar 

  • Paola C, Straub K, Mohrig D et al (2009) The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth Sci Rev 97(1–4):1–43

    CrossRef  Google Scholar 

  • Parker G (1982) Conditions for the ignition of catastrophically erosive turbidity currents. Mar Geol 46:307–327

    CrossRef  Google Scholar 

  • Parsons JD, Friedrichs CT, Traykovski PA et al (2007) The mechanics of marine sediment gravity flows. In: Nittrouer CA et al (eds) Continental margin sedimentation: from sediment transport to sequence stratigraphy. International Association of Sedimentologists Special Publication 37, Blackwell Publishing, Oxford, UK, pp 275–336

    Google Scholar 

  • Paull CK, Mitts P, Ussler W III et al (2005) Trail of sand in upper Monterey canyon: offshore California. Bull Geol Soc Am 117(9–10):1134–1145

    CrossRef  Google Scholar 

  • Paull CK, Ussler W III, Caress D et al (2010) Origins of large crescent-shaped bedforms within the axial channel of Monterey canyon. Geospheres 6:755–774

    CrossRef  Google Scholar 

  • Pham CK, Ramirez-Llodra E, Alt CHS et al (2014) Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9(4):e95839

    CrossRef  Google Scholar 

  • Piper DJW, Normark WR (2009) Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. J Sediment Res 79:347–362

    CrossRef  Google Scholar 

  • Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46:79–97

    CrossRef  Google Scholar 

  • Pitman WC III (1978) Relationship between eustacy and stratigraphic sequences of passive margins. Geol Soc Am Bull 89:389–1403

    CrossRef  Google Scholar 

  • Posamentier HW, Erskine RD, Mitchum RM (1991) Models for submarine fan deposition within a sequence stratigraphic frameworks. In: Weimer P, Link M (eds) Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer, pp 197–222

    Google Scholar 

  • Pratson LF, Coakley BJ (1996) A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows. Geol Soc Am Bull 108(2):225–234

    CrossRef  Google Scholar 

  • Pratson LF, Ryan WBF (1996) Automated drainage extraction for mapping the Monterey submarine drainage system, California margin. Mar Geophys Res 18:757–777

    CrossRef  Google Scholar 

  • Pratson LF, Ryan WBF, Mountain GS et al (1994) Submarine canyon initiation by downslope-eroding sediment flows; evidence in late cenozoic strata on the New Jersey continental slope. Geol Soc Am Bull 106(3):395–412

    CrossRef  Google Scholar 

  • Pratson LF, Imran J, Parker G et al (2000) Debris flows vs. turbidity currents: a modeling comparison of their dynamics and deposits. In: Bouma AH, Stone CG (eds) Fine-grained Turbidite Systems. American Association of Petroleum Geologists Memoir 72, vol 68. SEPM Spec Publ, pp 57–72

    Google Scholar 

  • Pratson LF, Nittrouer CA, Wiberg PL et al (2007) Seascape evolution on clastic continental shelves and slopes. In: C.A. Nittrouer JA et al (eds) Continental margin sedimentation: from sediment transport to sequence stratigraphy. International Association of Sedimentologists Special Publication 37. Blackwell Publishing, Oxford, UK, pp 339–380

    Google Scholar 

  • Puig P, Ogston AS, Mullenbach BL et al (2003) Shelf-to canyon sediment-transport processes on the Eel continental margin (northern California). Mar Geol 193(1–2):129–149

    CrossRef  Google Scholar 

  • Puig P, Palanques A, Orange DL et al (2008) Dense shelf water cascades and sedimentary furrow formation in the Cap de Creus Canyon, northwestern Mediterranean Sea. Cont Shelf Res 28:2017–2030

    CrossRef  Google Scholar 

  • Puig P, Canals M, Company JB et al (2012) Ploughing the deep sea floor. Nature 489:286–290

    CrossRef  Google Scholar 

  • Puig P, Palanques A, Martín J (2014) Contemporary sediment-transport processes in submarine canyons. Annu Rev Mar Sci 6:53–77

    CrossRef  Google Scholar 

  • Pusceddu A, Bianchelli S, Martín J et al (2014) Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc Natl Acad Sci 111(24):8861–8866

    CrossRef  Google Scholar 

  • Ryan WBF, Hsue KJ, Cita MB et al (1973) Initial reports of the Deep Sea drilling project, covering Leg 13 of the cruises of the drilling vessel Glomar Challenger Lisbon, Portugal to Lisbon, Portugal, Aug–Oct 1970. Texas A & M University, Ocean Drilling Program, College Station, TX

    Google Scholar 

  • Salvadó JA, Grimalt JO, López JF et al (2012) Role of dense shelf water cascading in the transfer of organochlorine compounds to open marine waters. Environ Sci Technol 46:2624–2632

    CrossRef  Google Scholar 

  • Sanchez-Vidal A, Canals M, Calafat AM et al (2012) Impacts on the deep-sea ecosystem by a severe coastal storm. PLoS ONE 7(1):e30395

    CrossRef  Google Scholar 

  • Shepard FP (1932) Landslide modifications in submarine valleys. EOS Trans Am Geophys Union 13(1):226–230

    CrossRef  Google Scholar 

  • Shepard FP (1963) Submarine Geology. Harper & Row, New York 557 p

    Google Scholar 

  • Shepard FP (1981) Submarine canyons; multiple causes and long-time persistence. Am Assoc Petrol Geol Bull 65:1062–1077

    Google Scholar 

  • Spencer JW (1903) Submarine valleys off the American coasts and in the North Atlantic. Geol Soc Am Bull 14:207–226

    CrossRef  Google Scholar 

  • Straub KM, Mohrig D (2009) Constructional canyons built by sheet-like turbidity currents: observations from offshore Brunei Darussalem. J Sediment Res 79:24–39

    CrossRef  Google Scholar 

  • Straub KM, Jerolmack DJ, Mohrig D, Rothman DH (2007) Channel network scaling laws in submarine basins. Geophys Res Lett 34:L12613

    CrossRef  Google Scholar 

  • Tubau X, Canals M, Lastras G et al (2015) Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: the role of hydrodynamic processes. Prog Oceanogr 134:379–403

    CrossRef  Google Scholar 

  • Twichell DC, Roberts DG (1982) Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson and Baltimore Canyons. Geology 10(8):408–412

    CrossRef  Google Scholar 

  • Tyler P, Amaro T, Arzola R et al (2009) Europe’s Grand canyon: Nazare submarine canyon. Oceanography 22:48–57

    CrossRef  Google Scholar 

  • Veatch AC, Smith PA (1939) Atlantic submarine valleys of the United States and the Congo submarine valley. Geological Society of America special papers, vol 7. New York, 106 pp

    Google Scholar 

  • Wåhlin AK (2002) Topographic steering of dense currents with application to submarine canyons. Deep Sea Res Part I 49:305–320

    CrossRef  Google Scholar 

  • Wåhlin AK (2004) Downward channeling of dense water in topographic corrugations. Deep Sea Res Part I 51:577–590

    CrossRef  Google Scholar 

  • Wonham JP, Jayr S, Mougamba R et al (2000) 3D sedimentary evolution of a canyon fill (Lower Miocene-age) from the mandrove Formation, offshore Gabon. Mar Pet Geol 17:175–197

    CrossRef  Google Scholar 

  • Woodall LC, Sanchez-Vidal A, Canals M et al (2014) The deep sea is a major sink for microplastic debris. R Soc Open Sci 1:140317

    CrossRef  Google Scholar 

  • Zaniboni F, Armigliato A, Pagnoni G et al (2010) Continental margins as a source of tsunami hazard: The 1977 Gioia Tauro (Italy) landslide–tsunami investigated through numerical modeling. Mar Geol 357:210–217

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 658358 (D. Amblas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Amblas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Amblas, D. et al. (2018). Submarine Canyons and Gullies. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_14

Download citation