Skip to main content

Shallow Coastal Landforms

Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Shallow coastal landforms are often highly dynamic environments due to natural and anthropogenic pressure. The action of waves, tidal currents, rivers inputs, sea-level rise, climate, geology and coastal engineering shapes their morphology at different temporal and spatial scales. The recent technological development of the multibeam echosounder, LiDAR and satellite systems now permits the mapping of shallow coastal landforms at very high resolution, even for depths shallower than 10 m, providing improved understanding of these morphological features. In this chapter, we provide a review of the main shallow coastal submarine landforms and of the newest methods to map them and measure their changes over time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aigner T (1985) Storm depositional systems: dynamic stratigraphy in modern and ancient shallow-marine sequences. Lecture Notes in Earth Sciencs vol 3. Springer, Berlin, Heidelberg

    Google Scholar 

  • Allen JRL (1965) Scour marks in snow. J Sed Petrol 35(2):331–338

    Google Scholar 

  • Allen JRL (1968a) Flute marks and flute separation. Nature 219:602–604

    CrossRef  Google Scholar 

  • Allen JRL (1968b) Current ripples: their relation to patterns of water and sediment motion. Elsevier, New York

    Google Scholar 

  • Allen JRL (1971a) Transverse erosional marks of mud and rock: their physical basis and geological significance. Sed Geol 5:167–385

    CrossRef  Google Scholar 

  • Allen JRL (1971b) Bed forms due to mass transfer in turbulent flows: a kaleidoscope of phenomena. J Fluid Mech 49(1):49–63

    CrossRef  Google Scholar 

  • Allen JRL (1975) Development of flute-mark assemblages, 2. Evolution of trios of defects. Sed Geol 13:1–26

    CrossRef  Google Scholar 

  • Allen JRL (1980) Sand waves: a model of origin and internal structure. Sed Geol 26(4):281–328

    CrossRef  Google Scholar 

  • Allen JRL (ed) (1982a) Developments in sedimentology, sedimentary structures, their character and physical basis. Vol I. 30A. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Allen JRL (ed) (1982b) Developments in sedimentology, sedimentary structures, their character and physical basis. Vol II. 30B. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231

    CrossRef  Google Scholar 

  • Amos CL, Li MZ, Chiocci FL et al (2003) Origin of shore-normal channels from the shoreface of Sable Island. Can J Geophys Res 108(C3):3094

    CrossRef  Google Scholar 

  • Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem-SEPM bedforms and bedding structures. J Sedim Petrol 60:160–172

    CrossRef  Google Scholar 

  • Axelsson A (2010) Rapid topographic and bathymetric reconnaissance using airborne LiDAR. In: Proceedings of SPIE—The International Society For Optical Engineering, vol 7835, Toulouse, France

    Google Scholar 

  • Barnard PL, Erikson LH, Kvitek RG (2011) Small-scale sediment transport patterns and bedform morphodynamics: new insights from high-resolution multibeam bathymetry. Geo-Mar Lett 31(4):227–236

    CrossRef  Google Scholar 

  • Bartholdy J, Ernstsen VB, Flemming BW, Winter C, Bartholomä A, Kroon A (2015) On the formation of current ripples. Sci Rep 5(1)

    Google Scholar 

  • Belderson RH, Johnson MA, Kenyon NH (1982) Bedforms. In: Stride (ed) Offshore tidal sands, 1st edn. Chapman and Hall, pp 27–57

    Google Scholar 

  • Berné S, Castaing P, Le Drezen E et al (1993) Morphology, internal structure, and reversal of asymmetry of large sub-tidal dunes in the entrance to Gironde Estuary (France). J Sediment Res 63:780–793

    Google Scholar 

  • Berthot A, Pattiaratchi C (2006) Mechanisms for the formation of headland-associated linear sandbanks. Cont Shelf Res 26(8):987–1004

    CrossRef  Google Scholar 

  • Besio G, Blondeaux P, Brocchini M et al (2004) On the modeling of sand wave migration. J Geophys Res Oceans 109(C4)

    Google Scholar 

  • Besio G, Blondeaux P, Brocchini M et al (2008) The morphodynamics of tidal sand waves: a model overview. Coast Eng 55(7):657–670

    CrossRef  Google Scholar 

  • Best JL (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res Earth 110(F4)

    Google Scholar 

  • Boggs S (2006) Principles of sedimentology and stratigraphy. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Brown CJ, Blondel P (2009) Developments in the application of multibeam sonar backscatter for seafloor habitat mapping. Appl Acoust 70(10):1242–1247

    CrossRef  Google Scholar 

  • Brown CJ, Smith SJ, Lawton P et al (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92(3):502–520

    CrossRef  Google Scholar 

  • Browne GH, Myrow PM (1994) Pot and gutter casts from the Chapel Island Formation, Southeast Newfoundland; discussion and reply. J Sediment Res 64(3a):706–709

    CrossRef  Google Scholar 

  • Burkow M, Griebel M (2016) A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle. Comput Fluids 125:1–10

    CrossRef  Google Scholar 

  • Cazenave PW, Dix JK, Lambkin DO et al (2013) A method for semi-automated objective quantification of linear bedforms from multi-scale digital elevation models. Earth Surf Proc Land 38(3):221–236

    CrossRef  Google Scholar 

  • Coco G, Senechal N, Rejas A et al (2014) Beach response to a sequence of extreme storms. Geomorphology 204:493–501

    CrossRef  Google Scholar 

  • Cossio T, Slatton KC et al (2011) Predicting small target detection performance of low-SNR airborne LiDAR. IEEE J Sel Top Appl Earth Obs Remote Sens 99:1–17

    Google Scholar 

  • Cowell PJ, Thom BG (1994) Morphodynamics of coastal evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Dalrymple RW, John Knight R, Lambiase JJ (1978) Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 275 (5676):100–104

    Google Scholar 

  • Dalrymple RW (1984) The morphology of internal structure of sandwaves in the Bay of Fundy. Sedimentology 31:365–382

    CrossRef  Google Scholar 

  • Dalrymple RW, Rhodes RN (1995) Estuarine dunes and barforms, in geomorphology and sedimentology of estuaries. In: Perillo GM (ed) Developments in sedimentology. Elsevier, Amsterdam, pp 359–422

    Google Scholar 

  • De Falco G, Tonielli R, Di Martino G et al (2010) Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont Shelf Res 30(18):1941–1950

    CrossRef  Google Scholar 

  • Dellapenna TM, Kuehl SA, Pitts L (2001) Transient, longitudinal, sedimentary furrows in the York River Subestuary, Chesapeake Bay: furrow evolution and effects on seabed mixing and sediment transport. Estuaries 24(2):215–227

    CrossRef  Google Scholar 

  • Diesing M, Green SL, Stephens D et al (2014) Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont Shelf Res 84:107–111

    CrossRef  Google Scholar 

  • Duffy GP, Hughes-Clarke JE (2005) Application of spatial cross correlation to detection of migration of submarine sand dunes. J Geophys Res 110:F04S12

    Google Scholar 

  • Duffy GP, Hughes-Clarke JE (2012) Measurement of bedload transport in a coastal sea using repeat swath bathymetry surveys: assessing bedload formulae using sand dune migration. Sediments, morphology and sedimentary processes on continental shelves: advances in technologies, research and applications. International Association of Sedimentology, Wiley

    Google Scholar 

  • Dunbar CO, Rodgers J (1957) Principles of stratigraphy. Wiley, New York

    Google Scholar 

  • Dyer KR, Huntley DA (1999) The origin, classification and modelling of sand banks and ridges. Cont Shelf Res 19(10):1285–1330

    CrossRef  Google Scholar 

  • Dzulynski S, Sanders JE (1962) Current marks on firm mud bottoms. Trans Connecticut Acad Arts Sci 42:57–96

    Google Scholar 

  • Dzulynski S, Slaczka A (1958) Directional structures and sedimentation of the Krosno Beds (Carpathian flysch). Ann Soc Geol Pologne 16:205–259

    Google Scholar 

  • Dzulynski S, Walton EK (1965) Sedimentary features of flysch and greywackes. Developments in sedimentology, vol 7. Elsevier, Amsterdam

    Google Scholar 

  • Erdey-Heydorn MD (2008) An ArcGIS seabed characterization toolbox developed for investigating benthic habitats. Mainer Geodesy 31(4):318–358

    CrossRef  Google Scholar 

  • Ernstsen VB, Noormets R, Winter et al (2006) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo Mar Lett 26(3):151–163

    Google Scholar 

  • Escauriaza C, Sotiropoulos F (2011) Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier. J Geophys Res 116:F03007

    CrossRef  Google Scholar 

  • Evans IS (1972) General geomorphometry, derivatives of altitude, and descriptive statistics. Spatial Analysis in Geomorphology, pp 17–90

    Google Scholar 

  • Fagherazzi S, Sun T (2004) A stochastic model for the formation of channel networks in tidal marshes. Geophys Res Lett 31:L21503

    CrossRef  Google Scholar 

  • Feldens P, Diesing M, Schwarzer K et al (2015) Occurrence of flow parallel and flow transverse bedforms in Fehmarn Belt (SW Baltic Sea) related to the local palaeomorphology. Geomorphology 231:53–62

    CrossRef  Google Scholar 

  • Fernandez-Diaz JC, Glennie CL, Carter WE et al (2014) Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor. IEEE J Sel Top Appl Earth Obs Remote Sens 99 7(2):623–635

    Google Scholar 

  • Ferrini VL, Flood RD (2005) A comparison of rippled scour depressions identified with multibeam sonar: evidence of sediment transport in inner shelf environments. Cont Shelf Res 25(16):1979–1995

    CrossRef  Google Scholar 

  • Flemming BW (1980) Sand transport and bedform patterns on the continental shelf between Durban and Port Elizabeth (Southeast African continental margin). Sed Geol 26:179–205

    CrossRef  Google Scholar 

  • Flemming BW (2000) The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In: Marine sandwave dynamics, international workshop, pp 23–24

    Google Scholar 

  • Fogarin S (2015) Mappatura dell’ambiente sedimentario della bocca tidale di Chioggia (Laguna di Venezia): backscatter acustico, morfologia del fondale e distribuzione dimensionale, dissertation, University of Ca’ Foscari, Venice

    Google Scholar 

  • Flood RD (1981) Distribution, morphology, and origin of sedimentary furrows in cohesive sediments, Southampton Water. Sedimentology 28:511–529

    CrossRef  Google Scholar 

  • Flood RD (1983) Classification of sedimentary furrows and a model for furrow initiation and evolution. Geol Soc Am Bull 94(5):630–639

    CrossRef  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201

    CrossRef  Google Scholar 

  • Foody GM (2004) Thematic map comparison. Photogram Eng Remote Sens 70(5):627–633

    CrossRef  Google Scholar 

  • Foody GM (2010) Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens Environ 114(10):2271–2285

    CrossRef  Google Scholar 

  • Ford DC, Williams P (1989) Karst geomorphology and hydrology. Unwin Hyman, London, UK

    CrossRef  Google Scholar 

  • Fraccascia S, Winter C, Ernstsen VB et al (2016) Residual currents and bedform migration in a natural tidal inlet (Knudedyb, Danish Wadden Sea). Geomorphology 271:74–83

    CrossRef  Google Scholar 

  • Giménez R, Planchon O, Silvera N et al (2004) Longitudinal velocity patterns and bed morphology interaction in a rill. Earth Surf Proc Land 29:105–114

    CrossRef  Google Scholar 

  • Goodchild MF, Ford DC (1971) Analysis of scallop patterns under controlled conditions. J Geol 79(1):52–62

    CrossRef  Google Scholar 

  • Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from flume experiments, 1956–61

    Google Scholar 

  • Hasan RC, Ierodiaconou D, Laurenson L, Schimel A (2014) Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping. Plos one 9(5):e97339

    Google Scholar 

  • Hughes-Clarke JE, Mayer LA et al (1996) Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Mar Geophys Res 18(6):607–629

    CrossRef  Google Scholar 

  • Huthnance JM (1982a) On one mechanism forming linear sandbanks. Estuar Coast Mar Sci 14(1982):19–99

    Google Scholar 

  • Huthnance JM (1982b) On the formation of sand banks of finite extent. Estuar Coast Mar Sci 15(1982):277–299

    CrossRef  Google Scholar 

  • Ierodiaconou D, Monk J, Rattray A et al (2011) Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations. Cont Shelf Res 31(2):S28–S38

    CrossRef  Google Scholar 

  • Karcz I (1968) Fluvial obstacle marks from the wadis of the Negev (Southern Israel). J Sediment Res 38:1000–1012

    Google Scholar 

  • Krejci-Graf J (1932) Definition der Begriffe Marken, Spuren, Fahrten, Bauten, Hieroglyphen und Fucoiden. Senckenbergiana 14:19–39

    Google Scholar 

  • Kruss A, Madricardo F, Tegowski J et al (2014) A combined GIS-2DFTT multi-parameter analysis of very high resolution bathymetric data: a case study from the Venice Lagoon. In: 2nd International Conference and Exhibition on Underwater Acoustic (UA2014), Rhodes, Greece

    Google Scholar 

  • Lecours V, Dolan MFJ, Micallef A, Lucieer VL (2016) A review of marine geomorphometry, the quantitative study of the seafloor. Hydrol Earth Syst Sci 20:3207–3244

    CrossRef  Google Scholar 

  • Leeder MR (1982) Sedimentology: process and product. Allen & Unwin, London

    CrossRef  Google Scholar 

  • Lefebvre A, Ernstsen VB, Winter C (2011) Bedform characterization through 2D spectral analysis. J Coastal Res 64:781

    Google Scholar 

  • Longhitano SG, Mellere D, Steel RJ et al (2012) Tidal depositional systems in the rock record: a review and new insights. Sed Geol 279:2–22

    CrossRef  Google Scholar 

  • Lucieer V, Lamarche G (2011) Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand. Cont Shelf Res 31:1236–1247

    CrossRef  Google Scholar 

  • Lucieer V, Lucieer A (2009) Fuzzy clustering for seafloor classification. Mar Geol 264(3):230–241

    CrossRef  Google Scholar 

  • Lyons AP, Fox WL, Hasiotis T et al (2002) Characterization of the two-dimensional roughness of wave-rippled sea floors using digital photogrammetry. IEEE J Oceanic Eng 27(3):515–524

    CrossRef  Google Scholar 

  • Maddux TB, Nelson JM, McLean SR (2003a) Turbulent flow over three-dimensional dunes: 1. Free surface and flow response. J Geophys Res 108(F1)

    Google Scholar 

  • Maddux TB, McLean SR, Nelson JM (2003b) Turbulent flow over three-dimensional dunes: 2. Fluid and bed stresses. J Geophys Res 108(F1):6010

    Google Scholar 

  • Madricardo F, Amos CL, De Pascalis F et al (2015) Sediment transport in a tidal inlet: the case of the Lido inlet, Venice Italy. In: Proceedings of ECSA 55: unbounded boundaries and shifting baselines: estuaries and coastal seas in a rapidly changing world, London 2015

    Google Scholar 

  • Madricardo F, Foglini F, Trincardi F (2016) Processed high-resolution ASCII: ESRI gridded bathymetry data (EM2040 and EM3002) from the Lagoon of Venice collected in 2013. Integr Earth Data Appl (IEDA). http://dx.doi.org/10.1594/IEDA/323605. Accessed 23 Feb 2017

  • McGonigle C, Collier J (2014) Interlinking backscatter, grain size and benthic community structure. Estuar Coast Shelf Sci 147:123–136

    CrossRef  Google Scholar 

  • McLean SR (1981) The role of non-uniform roughness in the formation of sand ribbons. Dev Sedimentol 32:49–74

    CrossRef  Google Scholar 

  • Micallef A, Berndt C, Masson DG et al (2007) A technique for the morphological characterization of submarine landscapes as exemplified by debris flows of the Storegga Slide. J Geophys Res 112:F02001

    Google Scholar 

  • Micallef A, Le Bas TP, Huvenne VA et al (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 39:14–26

    CrossRef  Google Scholar 

  • Micallef A, Foglini F, Le Bas et al (2013) The submerged paleolandscape of the Maltese Islands: morphology, evolution and relation to quaternary environmental change. Mar Geol 335:129–147

    Google Scholar 

  • Montereale Gavazzi GM, Madricardo F, Janowski L et al (2016) Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats—Application to the Venice Lagoon, Italy. Estuar Coast Shelf Sci 170:45–60

    CrossRef  Google Scholar 

  • Neill SP, Scourse JD (2009) The formation of headland/island sandbanks. Cont Shelf Res 29(18):2167–2177

    CrossRef  Google Scholar 

  • Neuendorf KKE, Mehl JP Jr, Jackson JA (eds) (2005) Glossary of geology, 5th edn. American Geological Institute, Alexandria

    Google Scholar 

  • Nichols G (2009) Sedimentology and stratigraphy, 2nd edn. Wiley, New York

    Google Scholar 

  • Nienhuis JH, Perron JT, Kao JC et al (2014) Wavelength selection and symmetry breaking in orbital wave ripples. J Geophys Res Earth 119(10):2239–2257

    CrossRef  Google Scholar 

  • Olariu C, Steel RJ, Dalrymple RW et al (2012) Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sed Geol 279:134–155

    CrossRef  Google Scholar 

  • Omidyeganeh M, Piomelli U (2013) Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 2. Flow structures. J Fluid Mech 734:509–534

    CrossRef  Google Scholar 

  • Parnum IM, Gavrilov AN (2011) High-frequency multibeam echo-sounder measurements of seafloor backscatter in shallow water: part 1—data acquisition and processing. Underwater Technol 30(1):3–12

    CrossRef  Google Scholar 

  • Parsons DR, Best JL, Orfeo O et al (2005) Morphology and flow fields of three‐dimensional dunes, Rio Paraná, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J Geophys Res Earth 110(F4)

    Google Scholar 

  • Pfenningbauer M, Ullrich A et al. (2011) High resolution hydrographic airborne laser scanner for surveying inland waters and shallow coastal zones. In: Proceedings SPIE 8037:80375

    Google Scholar 

  • Picard MD, High LR Jr (1973) Sedimentary structures of ephemeral streams. Developments in sedimentology vol 17. Elsevier, Amsterdam

    Google Scholar 

  • Pike RJ, Evans IS, Hengl T (2009) Geomorphometry: a brief guide. Dev Soil Sci 33:3–30

    Google Scholar 

  • Rattray A, Ierodiaconou D, Monk J et al (2013) Detecting patterns of change in benthic habitats by acoustic remote sensing. Mar Ecol Prog Ser 477:1–3

    CrossRef  Google Scholar 

  • Reading HG (ed) (1996) Sedimentary environments: processes, facies and stratigraphy, 3rd edn. Wiley-Blackwell, Oxford, pp 249–272

    Google Scholar 

  • Reineck HE, Singh IB (eds) (1975) Depositional sedimentary environments with reference to terrigenous clastics. Corrected reprint of the 1st edn. Springer, Berlin

    Google Scholar 

  • Reynaud JY, Dalrymple RW (2012) Shallow-marine tidal deposits. In: Davis S, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 335–370

    CrossRef  Google Scholar 

  • Ricci Lucchi F (1970) Sedimentografia. Atlante fotografico delle strutture primarie dei sedimenti, Zanichelli, Bologna

    Google Scholar 

  • Richardson K, Carling PA (2005) A typology of sculpted forms in open bedrock channels. Geol Soc Am Spec Pap 392:108

    Google Scholar 

  • Rubin DM, Hunter RE (1987) Bedform alignment in directionally varying flows. Science 237(4812):276–278

    CrossRef  Google Scholar 

  • Rücklin H (1938) Strömungsmarken im unteren Muschelkalk des Saarlandes. Senckenbergiana 20:94–114

    Google Scholar 

  • Schimel AC, Ierodiaconou D, Hulands L et al (2015) Accounting for uncertainty in volumes of seabed change measured with repeat multibeam sonar surveys. Cont Shelf Res 111:52–68

    CrossRef  Google Scholar 

  • Sengupta S (1966) Studies on orientation and imbrication of pebbles with respect to cross-stratification. J Sedimentol Petrol 36(2):362–369

    Google Scholar 

  • Skarke A, Trembanis AC (2011) Parametreization of bedform morphology and defect density with fingerprint analysis techniques. Cont Shelf Res 31(16):1688–1700

    CrossRef  Google Scholar 

  • Southard JB, Boguchwal LA (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. J Sediment Res 60(5)

    Google Scholar 

  • Ten Haaf E (1959) Graded beds of the Northern Apenines. Ph.D. dissertation, University of Groningen

    Google Scholar 

  • Várkonyiv P, Hargitai H (2014) Scour marks. Encyclopedia of planetary landforms. Springer Science, Business Media, New York

    Google Scholar 

  • van Dijk TA, Kleinhans MG (2005) Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands. J Geophys Res Earth 110(F4)

    Google Scholar 

  • van Dijk TA, Lindenbergh RC, Egberts PJ (2008) Separating bathymetric data representing multiscale rhythmic bed forms: a geostatistical and spectral method compared. J Geophys Res Earth 113(F4)

    Google Scholar 

  • van Oyen T, Blondeaux P, van den Eynde D (2013) Sediment sorting along tidal sand waves: a comparison between field observations and theoretical predictions. Cont Shelf Res 63:23–33

    CrossRef  Google Scholar 

  • van Rijn LC (1982) Prediction of bed forms, alluvial roughness and sediment transport. Delft Hydraulics S 487–11

    Google Scholar 

  • Vassoevic NB (1953) On some structures in the flysch (English summary). Tr Lvovsk Geol Obscesto 3:17–85

    Google Scholar 

  • Venditti JG (2007) Turbulent flow and drag over fixed two and three‐dimensional dunes. J Geophys Res Earth 112(F4)

    Google Scholar 

  • Voulgaris G, Morin JP (2008) A long-term real time sea bed morphology evolution system in the South Atlantic Bight. In: IEEE/OES 9th working conference on current measurement technology, CMTC 2008, pp 71–79

    Google Scholar 

  • Whitaker JH McD (1973) ‘Gutter casts’, a new name for scour-and-fill structures: with examples from the Llandoverian of Ringerike and Malmoya, Southern Norway. Nor Geol Tidsskr 53:403–417

    Google Scholar 

  • Williams JJ, Bell PS, Thorne PD (2003) Field measurements of flow fields and sediment transport above mobile bed forms. J Geophys Res Oceans 108(C4):3109

    CrossRef  Google Scholar 

  • Wilson JP (2012) Digital terrain modeling. Geomorphology 137(1):107–121

    CrossRef  Google Scholar 

  • Wright LD, Thom BG (1977) Coastal depositional landforms: a morphodynamic approach. Prog Phys Geogr 1(3):412–459

    CrossRef  Google Scholar 

  • Wright DJ, Lundblad ER, Larkin EM et al (2005) NOAA Coastal Services Center, ArcGIS Benthic Terrain Modeler, version 1.0. Accessed April 2017

    Google Scholar 

  • Yalin MS (1977) Mechanics of sediment transport. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fantina Madricardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Madricardo, F., Rizzetto, F. (2018). Shallow Coastal Landforms. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_10

Download citation