Arbuscular Mycorrhizal Symbiosis: Genetic and Functional Diversity

  • Rekha Pandey
  • Neera GargEmail author


Arbuscular mycorrhiza (AM) is the most widespread plant symbiosis that improves plant productivity and resistance to nutrient stress. Numerous studies have demonstrated a high variability in the symbiotic outcome of different combinations of host plant and AM fungi. This reflects functional diversity in AM fungi in terms of variation in underlying physiological processes. The variability exists not only between isolates of different species but also within different isolates of the same species. This can be correlated to the high genetic variability observed within this group of fungi. However, little is known about the genetic diversity of AM fungi due to the strict biotrophy of these fungi, difficulties in obtaining sufficient fungal material, and to the lack of knowledge of the reproductive system and the mutation rate. Studies have shown that within the same cytoplasm, AM fungi contain thousands of nuclei and show extremely high levels of genetic variation for some loci. However, knowledge about the arrangement of this variation between, or within, nuclei remains controversial. It has been proposed that AM fungi could either be homokaryotic or heterokaryotic. In addition to genetic diversity, variability in life strategy patterns of different species could account for the functional diversity in AM symbiosis, for example, variation in the hyphal growth, rate of phosphate uptake and transfer and even in expression of specific genes. This review thus attempts to discuss the reported findings on the genetic and functional diversity within this mutualistic symbiotic association.



The authors are grateful to the Department of Biotechnology (DBT), Government of India for providing financial assistance for undertaking the research in the above context.


  1. Abbott LK, Robson AD (1985) Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 99:245–255CrossRefGoogle Scholar
  2. Abbott LK, Robson AD, Gazey C (1994) Selection of inoculants vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read D, Varma AK (eds) Techniques for mycorrhizal research. Academic, San Diego, pp 1–22Google Scholar
  3. Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560PubMedPubMedCentralCrossRefGoogle Scholar
  4. Angelard C, Sanders IR (2011) Effect of segregation and genetic exchange on arbuscular mycorrhizal fungi in colonization of roots. New Phytol 189:652–657PubMedCrossRefGoogle Scholar
  5. Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR (2010) Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Curr Biol 20:1216–1221PubMedCrossRefGoogle Scholar
  6. Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514PubMedCrossRefGoogle Scholar
  7. Arguello A, O’Brien MJ, van der Heijden MGA, Wiemken A, Schmid B, Niklaus PA (2016) Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecol Lett 19(6):648–656. doi: 10.1111/ele.12601 PubMedCrossRefGoogle Scholar
  8. Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on non-homologous chromosomes in man and apes. Proc Natl Acad Sci U S A 77:7323–7327PubMedPubMedCentralCrossRefGoogle Scholar
  9. Augé RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis and osmotic adjustmentin response to NaCl stress: a meta-analysis. Front Plant Sci 5:562. doi: 10.3389/fpls.2014.00562 PubMedPubMedCentralGoogle Scholar
  10. Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357PubMedCrossRefGoogle Scholar
  11. Avise J (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer, Sunderland, MAGoogle Scholar
  12. Bago B, Azcon-Aguilar C, Goulet A, Piché Y (1998) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388CrossRefGoogle Scholar
  13. Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF (2013) High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Plant Nutr 4:426. doi: 10.3389/fpls.2013.00426 Google Scholar
  14. Barker SJ, Stummer B, Gao L, Dispain I, O’Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: Isolation and preliminary characterisation. Plant J 15:791–797CrossRefGoogle Scholar
  15. Becard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68CrossRefGoogle Scholar
  16. Begon, M., Harper, J.L., Townsend, C.R. (1996) Ecology: individuals, populations and communities. Blackwell Science, OxfordGoogle Scholar
  17. Bever JD, Wang M (2005) Arbuscular mycorrhizal fungi-hyphal fusion and multigenomic structure. Nature 433:3–4CrossRefGoogle Scholar
  18. Bever JD, Kang HJ, Kaonongbua W, Wang M (2008) Genomic organization and mechanisms of inheritance in arbuscular mycorrhizal fungi: contrasting the evidence and implications of current theories. In: Varma A (ed) Mycorrhiza. Springer, Berlin, Heidelberg, pp 135–171CrossRefGoogle Scholar
  19. Biermann B, Linderman RG (1983) Mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105CrossRefGoogle Scholar
  20. Boddington CL, Dodd JC (1999) Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol 142:531–538CrossRefGoogle Scholar
  21. Bonfante P, Requena N (2011) Dating in the dark: How roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:451–457PubMedCrossRefGoogle Scholar
  22. Boon E, Zimmerman E, Lang BF, Hijri M (2010) Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome. J Evol Biol 23:1519–1527PubMedCrossRefGoogle Scholar
  23. Boon E, Zimmerman E, St-Arnaud M, Hijri M (2013) Allelic differences among sister spores suggest genetic drift in an arbuscular mycorrhizal fungus. PLoS One 8:e83301. doi: 10.1371/journal.pone.0083301 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Boon E, Halary S, Bapteste E, Hijri M (2015) Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm. Genome Biol Evol 7:505–521PubMedPubMedCentralCrossRefGoogle Scholar
  25. Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465PubMedCrossRefGoogle Scholar
  26. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U et al (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017. doi: 10.1111/j.1365-313X.2010.04385.x PubMedCrossRefGoogle Scholar
  27. Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Bot Rev 79:473–495Google Scholar
  28. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  29. Bucking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In: Dhal NK, Sahu SC (eds) Plant science. Intech, Janeza Trdine, pp 107–539Google Scholar
  30. Bucking H, Mensah JA, Fellbaum CA (2016) Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun Integr Biol 9(1):e1107684. (4 pages). doi: 10.1080/19420889.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in Plant nutr. J Exp Bot 53:1593–1601PubMedCrossRefGoogle Scholar
  32. Calvente R, Cano C, Ferrol N, Azcón-Aguilar C, Barea JM (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19CrossRefGoogle Scholar
  33. Caravaca F, Alguacil MM, Figueroa D, Barea JM, Roldán A (2003) Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semiarid Mediterranean land. For Ecol Manag 182:49–58CrossRefGoogle Scholar
  34. Carbonnel S, Gutjahr C (2014) Control of arbuscular mycorrhiza development by nutrient signals. Front Plant Sci 5:Art 462Google Scholar
  35. Cavagnaro TR, Gao LL, Smith SE (2001) Morphology of arbuscular mycorrhizas is influences by fungal identity. New Phytol 151:469–475CrossRefGoogle Scholar
  36. Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25:281–293PubMedCrossRefGoogle Scholar
  37. Clapp JP, Fitter AH, Young JPW (1999) Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Mol Ecol 8:915–921PubMedCrossRefGoogle Scholar
  38. Clapp JP, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539–554CrossRefGoogle Scholar
  39. Colard A, Angelard C, Sanders IR (2011) Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. Appl Environ Microbiol 77:6510–6515PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cooke JC, Gemma JN, Koske RE (1987) Observations of nuclei in vesicular-arbuscular mycorrhizal fungi. Mycologia 79:331–333CrossRefGoogle Scholar
  41. Corradi N, Kuhn G, Sanders IR (2004) Monophyly of b-tubulin and H+−ATPase gene variants in Glomus intraradices: consequences for molecular evolutionary studies of AM fungal genes. Fungal Genet Biol 41:262–273PubMedCrossRefGoogle Scholar
  42. Corradi N, Croll D, Colard A, Kuhn G, Ehinger M, Sanders IR (2007) Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Appl Environ Microbiol 73:366–369PubMedCrossRefGoogle Scholar
  43. Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687PubMedCrossRefGoogle Scholar
  44. Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937PubMedCrossRefGoogle Scholar
  45. Daft MJ, El Giahmi AA (1978) Effects of arbuscular mycorrhiza on plant growth. VIII. Effects of defoliation and light on selected hosts. New Phytol 80:365–372CrossRefGoogle Scholar
  46. de la Providencia IE, de Souza FA, Fernandez F, Sejalon-Delmas N, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenetic groups. New Phytol 165:261–271PubMedCrossRefGoogle Scholar
  47. de Souza FA, Dalpé Y, Declerck S, de la Providencia IE, Sejalon-Delmas N (2005) Life history strategies in Gigasporaceae: insight from monoxenic culture. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 73–91CrossRefGoogle Scholar
  48. Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200CrossRefGoogle Scholar
  49. Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375–393PubMedCrossRefGoogle Scholar
  50. Douds DD, Nagahashi G (2000) Signalling and recognition events prior to colonisation of roots by arbuscular mycorrhizal fungi. In: Podila G, Douds DD (eds) Current advances in mycorrhizae research. APS Press, Minnesota, pp 11–18Google Scholar
  51. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117PubMedCrossRefGoogle Scholar
  52. Drew EA, Murray RS, Smith SE, Jakobsen I (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251:105–114CrossRefGoogle Scholar
  53. Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, Veen JAV, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ehinger MO, Croll D, Koch AM, Sanders IR (2012) Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations. New Phytol 196:853–861PubMedCrossRefGoogle Scholar
  55. Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013a) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:333–349CrossRefGoogle Scholar
  56. Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013b) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782PubMedCrossRefGoogle Scholar
  57. Feddermann N, Boller T, Salzer P, Elfstrand S, Wiemken A, Elfstrand M (2008) Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi. Planta 227:671–680PubMedCrossRefGoogle Scholar
  58. Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3:1–8CrossRefGoogle Scholar
  59. Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bucking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 109:2666–2671PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bucking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656PubMedCrossRefGoogle Scholar
  61. Friese C, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418CrossRefGoogle Scholar
  62. Gallaud I (1905) E’tudes sur les mycorrhizes endotrophes. Rev Ge’n Bot 17:5–48, 66–83, 123–135, 223–239, 313–325, 425–433, 479–500Google Scholar
  63. Gao LL, Knogge W, Delp G, Smith FA, Smith SE (2004) Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza defective mutant tomato. Mol Plant-Microbe Interact 17:1103–1113PubMedCrossRefGoogle Scholar
  64. Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25:165–180PubMedCrossRefGoogle Scholar
  65. Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 21:57–67CrossRefGoogle Scholar
  66. Geneva M, Zehirov G, Djonova E, Kaloyanova N, Georgiev G, Stancheva I (2006) The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant Soil Environ 52:435–440Google Scholar
  67. Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gianinazzi-Pearson V, Van Tuinen D, Wipf D, Dumas-Gaudot E, Recorbet G, Liu Y, Doidy J, Redecker D, Ferrol N (2012) Exploring the genome of glomeromycotan fungi. In: Hock B (ed) Fungal associations. Springer, Berlin, Heidelberg, pp 1–21Google Scholar
  69. Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724CrossRefGoogle Scholar
  70. Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624PubMedPubMedCentralCrossRefGoogle Scholar
  71. Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181CrossRefGoogle Scholar
  72. Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmüller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Berlin, pp 213–252CrossRefGoogle Scholar
  73. Gollotte A, Van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117PubMedCrossRefGoogle Scholar
  74. Gollotte A, L'Haridon F, Chatagnier O et al (2006) Repetitive DNA sequences include retrotransposons in genomes of the Glomeromycota. Genetica 128:455–469PubMedCrossRefGoogle Scholar
  75. Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949PubMedCrossRefGoogle Scholar
  76. Grunwald U, Guo WB, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan XL, Kuster H, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gustafson DJ, Casper BB (2006) Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecol 183:257–263CrossRefGoogle Scholar
  78. Gutjahr C, Parniske M (2013) Cell and developmental biology of the arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617PubMedCrossRefGoogle Scholar
  79. Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 50–91CrossRefGoogle Scholar
  81. Hamel C, Fyles H, Smith DL (1990) Measurement of development of endomycorrhizal mycelium using three vital stains. New Phytol 115:297–302CrossRefGoogle Scholar
  82. Hammer EC, Pallon J, Wallander H, Olsson PA (2011) Tit for Tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 76:236–244PubMedCrossRefGoogle Scholar
  83. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hart MM, Reader RJ (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36:357–366CrossRefGoogle Scholar
  85. Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194CrossRefGoogle Scholar
  86. Herrera Medina MJ, Gagnon H, Piche Y, Ocampo JA, Garrido JMG, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998CrossRefGoogle Scholar
  87. Hijri M, Sanders IR (2004) The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes. Fungal Genet Biol 41:253–261PubMedCrossRefGoogle Scholar
  88. Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163PubMedCrossRefGoogle Scholar
  89. Hijri M, Hosny M, van Tuinen D, Dulieu H (1999) Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal Genet Biol 26:141–151PubMedCrossRefGoogle Scholar
  90. Hijri M, Redecker D, Petetot JAMC, Voigt K, Wostemeyer J, Sanders IR (2002) Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Appl Environ Microbiol 68:4567–4573PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hosny M, deBarros JPP, Gianinazzi-Pearson V, Dulieu H (1997) Base composition of DNA from glomalean fungi: high amounts of methylated cytosine. Fungal Genet Biol 22:103–111PubMedCrossRefGoogle Scholar
  93. Hosny M, Gianinazzi-Pearson V, Dulieu H (1998) Nuclear DNA content of 11 fungal species in glomales. Genome 41:422–428CrossRefGoogle Scholar
  94. Huang JC, Lai WA, Singh S, Hameed A, Young CC (2013) Response of mycorrhizal hybrid tomato cultivars under saline stress. J Soil Sci Plant Nutr 13:469–484Google Scholar
  95. IJdo M, Schtickzelle N, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122PubMedCrossRefGoogle Scholar
  96. Jakobsen I (1999) Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, pp 309–332Google Scholar
  97. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380CrossRefGoogle Scholar
  98. Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488CrossRefGoogle Scholar
  99. Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789. doi: 10.1111/j.1469-8137.2007.02294.x PubMedCrossRefGoogle Scholar
  100. Jany JL, Pawlowska TE (2010) Multinucleate spores contribute to evolutionary longevity of asexual glomeromycota. Am Nat 175:424–435PubMedCrossRefGoogle Scholar
  101. Javot H, Pumplin N, Harrison M (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322PubMedCrossRefGoogle Scholar
  102. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  103. Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908CrossRefGoogle Scholar
  104. Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 101:6285–6290PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kiers ET, van der Heijden MGA (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87:1627–1636PubMedCrossRefGoogle Scholar
  106. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  107. Kiers ET, West SA, Wyatt GAK, Gardner A, Bücking H, andWerner GDA (2016) Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nat Plants 2:16063. doi: 10.1038/nplants.2016.63 PubMedCrossRefGoogle Scholar
  108. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303CrossRefGoogle Scholar
  109. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  110. Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184PubMedCrossRefGoogle Scholar
  111. Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci U S A 101:2369–2374PubMedPubMedCentralCrossRefGoogle Scholar
  112. Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110PubMedCrossRefGoogle Scholar
  113. Kohl L, van der Heijden MGA (2016) Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem 94:191–199CrossRefGoogle Scholar
  114. Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277PubMedCrossRefGoogle Scholar
  115. Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748PubMedCrossRefGoogle Scholar
  116. Lambert DH, Cloe H, Baker DE (1980) Variation in the response of Alfa alfa clones and cultivars of mycorrhiza and phosphorus. Crop Sci 20:615–618CrossRefGoogle Scholar
  117. Lee EH, Eo JK, Ka KH, Eom AH (2015) Diversity of Arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41:121–125. doi: 10.5941/MYCO.2013.41.3.121 CrossRefGoogle Scholar
  118. Lerat S, Lapointe L, Gutjahr S, Piché Y, Vierheilig H (2003a) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589–595CrossRefGoogle Scholar
  119. Lerat S, Lapointe L, Piche Y, Vierheilig H (2003b) Variable carbon sink strength of different Glomus mosseae strains colonizing barley roots. Can J Bot 81:886–889CrossRefGoogle Scholar
  120. Li H, Smith FA, Dickson S, Holloway RE, Smith SE (2008) Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol 178:852–862PubMedCrossRefGoogle Scholar
  121. Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, Mu D, Pang E, Cao H, Cha H, Lin T, Zhou Q, Shang Y, Li Y, Sharma Y, van Velzen R, de Ruijter N, Aanen DK, Win J, Kamoun S, Bisseling T, Geurts R, Huanget S (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet 10:e1004078. doi: 10.1371/journal.pgen.1004078 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Liu J, Blaylock L, Endre G, Cho J, Town CD (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123PubMedPubMedCentralCrossRefGoogle Scholar
  123. Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695. doi: 10.1371/journal.pone.0036695 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Marleau J, Dalpe Y, St-Arnaud M, Hijri M (2011) Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol Biol 11:51. doi: 10.1186/1471-2148-11-51 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533CrossRefGoogle Scholar
  126. Meghvansi MK, Prasad K, Harwani D, Mahna SK (2008) Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur J Soil Biol 44:316–323CrossRefGoogle Scholar
  127. Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H (2015) High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza. doi: 10.1007/s00572-015-0631-x
  128. Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364CrossRefGoogle Scholar
  129. Nadal M, Paszkowski U (2013) Polyphony in the rhizosphere: Presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 16:473–479PubMedCrossRefGoogle Scholar
  130. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841. doi: 10.1371/journal. pone.0090841 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Novais CB, Borges WL, Jesus ED, Saggin OJ, Siqueira JO (2014) Inter- and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl Soil Ecol 76:78–86CrossRefGoogle Scholar
  132. Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbial Ecol 72:125–131CrossRefGoogle Scholar
  133. Opik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430PubMedCrossRefGoogle Scholar
  134. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  135. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pawlowska TE (2005) Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 251:185–192PubMedCrossRefGoogle Scholar
  137. Pawlowska TE (2007) How the genome is organized in the Glomeromycota. In: Heitman JW, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. American Society for Microbiology, Washington, DC, pp 419–430Google Scholar
  138. Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737PubMedCrossRefGoogle Scholar
  139. Pawlowska TE, Taylor JW (2005) Arbuscular mycorrhizal fungi-hyphal fusion and multigenomic structure. Reply. Nature 433:4–5CrossRefGoogle Scholar
  140. Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol. Biochemist 68:429–439Google Scholar
  141. Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376CrossRefGoogle Scholar
  142. Peng J, Li Y, Shi P, Chen X, Lin H, Zhao B (2011) The differential behavior of arbuscular mycorrhizal fungi in interaction with Astragalus sinicus L. under salt stress. Mycorrhiza 21:27–33PubMedCrossRefGoogle Scholar
  143. Pianka ER (1970) On r and K selection. Am Nat 104:592–597CrossRefGoogle Scholar
  144. Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–454PubMedCrossRefGoogle Scholar
  145. Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc B Biol Sci 276:4237–4245CrossRefGoogle Scholar
  146. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: Historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Switzerland, pp 1–7Google Scholar
  147. Pringle A, Moncalvo JM, Vilgalys R (2000) High levels of variation in ribosomal DNA sequences within and among spores of a natural population of the arbuscular mycorrhizal fungus Acaulospora colossica. Mycologia 92:259–268CrossRefGoogle Scholar
  148. Pringle A, Moncalvo JM, Vilgalys R (2003) Revisiting the rDNA sequence diversity of a natural population of the arbuscular mycorrhizal fungus Acaulospora colossica. Mycorrhiza 13:227–231PubMedCrossRefGoogle Scholar
  149. Purin S, Morton JB (2011) In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. Mycorrhiza 21:505–514PubMedCrossRefGoogle Scholar
  150. Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498PubMedPubMedCentralCrossRefGoogle Scholar
  151. Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33–40PubMedCrossRefGoogle Scholar
  152. Ruiz-Lozano JM, Azcon R (1993) Specificity and functional compatibility of VA mycorrhizal endophytes in association with Bradyrhizobium strains in Cicer arietinum. Symbiosis 15:217–226Google Scholar
  153. Schreiner RP (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215CrossRefGoogle Scholar
  154. Schüßler A (2014) Glomeromycota: Species list. [accessed 9 November 2013]
  155. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  156. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515PubMedCrossRefGoogle Scholar
  157. Sharma D, Kapoor R, Bhatnagar AK (2009) Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. Eur J Soil Biol 45:328–333CrossRefGoogle Scholar
  158. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  159. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New YorkGoogle Scholar
  160. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250PubMedCrossRefGoogle Scholar
  161. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13PubMedCrossRefGoogle Scholar
  162. Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366CrossRefGoogle Scholar
  163. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  164. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth and total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  165. Song F, Kong X, Dong A, Liu X (2012) Impact of arbuscular mycorrhizal fungi on the growth and related physiological indexes of Amorpha fruticosa. J Med Plant Res 6:3648–3655Google Scholar
  166. Stancheva I, Geneva M, Zehirov G, Tsvestkova G, Hristozkova M, Georgiev G (2006) Effects of combined inoculation of pea plants with arbuscular mycorrhizal fungi and Rhizobium on nodule formation and nitrogen fixing activity. Gen Appl Plant Physiol Special Issue 4:61–66Google Scholar
  167. Stukenbrock EH, Rosendahl S (2005) Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus sp.) studied by multilocus genotyping of single spores. Mol Ecol 14:743–752PubMedCrossRefGoogle Scholar
  168. Sykorova Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14PubMedCrossRefGoogle Scholar
  169. Tajini F, Drevon J (2012) Effect of arbuscular mycorrhizas on P use efficiency for growth and N2 fixation in common bean (Phaseolus vulgaris L.) Sci Res Essays 7:1681–1689Google Scholar
  170. Tchabi A, Coyne D, Hountondji F, Llawouin L, Wiemken A, Oehl F (2010) Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Appl Soil Ecol 45:92–100CrossRefGoogle Scholar
  171. Thonar C, Schnepf A, Frossard E, Roose T, Jansa J (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245CrossRefGoogle Scholar
  172. Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148CrossRefGoogle Scholar
  173. Tian H, Drijber RA, Xiaolin L, Miller DN, Wienhold BJ (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.) Mycorrhiza 23:507–514PubMedCrossRefGoogle Scholar
  174. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JP, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769PubMedCrossRefGoogle Scholar
  175. Tisserant E, Malbreilb M, Kuoc A, Kohlera A, Symeonidid A, Balestrini R, Charron P, Duensing N, dit Frey NF, Gianinazzi-Pearsoni V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Steve Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, Clemente HS, Shapiro H, van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill Y, Tuskans GA, Young JPW, Sanders IR, Henrissat B, Rensing SA, Grigorievc IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122PubMedPubMedCentralCrossRefGoogle Scholar
  176. Torrecillas E, Alguacil MM, Roldán A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186PubMedPubMedCentralCrossRefGoogle Scholar
  177. Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13CrossRefGoogle Scholar
  178. Tufenkci S, Demir S, Şensoy S, Ünsal H, Demirer E (2012) The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turk J Agric For 36:317–327Google Scholar
  179. van der Heijden MGA, Scheublin TR (2007) Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174:244–250PubMedCrossRefGoogle Scholar
  180. van der Heijden MGA, Walder F (2016) Reply to ‘Misconceptions on the application of biological market theory to the mycorrhizal symbiosis’. Nat Plants 2:16062. doi: 10.1038/nplants.2016.62 PubMedCrossRefGoogle Scholar
  181. van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  182. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi: 10.1111/nph.13288 PubMedCrossRefGoogle Scholar
  183. Vandenkoornhuyse P, Leyval C (1998) SSU rDNA sequencing and PCR-fingerprinting reveal genetic variation within Glomus mosseae. Mycologia 90:791–797CrossRefGoogle Scholar
  184. Vandenkoornhuyse P, Leyval C, Bonnin I (2001) High genetic diversity in AM fungi: evidence for recombination events. Heredity 87:243–253PubMedCrossRefGoogle Scholar
  185. Verbruggen E, van der Heijden MGA, Weedon JT, Kowalchuk GA, Röling WFM (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353PubMedCrossRefGoogle Scholar
  186. Veresoglou SD, Shaw LJ, Sen R (2011) Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 340:481–490CrossRefGoogle Scholar
  187. Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol 172:185–188PubMedCrossRefGoogle Scholar
  188. Wagg C, Jansa J, Stadler M, Schmid B, Van der Heijden MGA (2011) Mycorrhizal fungal identity and diversity relaxes plant – plant competition. Ecology 92:1303–1313PubMedCrossRefGoogle Scholar
  189. Walder F, van der Heijden MGA (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants 1:15159. doi: 10.1038/nplants.2015.159 PubMedCrossRefGoogle Scholar
  190. Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797PubMedPubMedCentralCrossRefGoogle Scholar
  191. Williams A, Ridgway H, Norton D (2013) Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New For 44:183–195CrossRefGoogle Scholar
  192. Wu QS, Li GH, Zou YN (2011) Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. J Anim Plant Sci 21:746–750Google Scholar
  193. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501PubMedCrossRefGoogle Scholar
  194. Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations