Arbuscular Mycorrhizal Technology Based on Ecosystem Services Rendered by Native Flora for Improving Phosphorus Nutrition of Upland Rice: Status and Prospect

  • Dipankar MaitiEmail author
  • Neha Nancy Toppo
  • Mukesh Nitin
  • Binit Kumar


Upland ecology is predominantly rainfed and drought prone having nutrient-poor, well-drained, acidic soils. Direct-seeded rice (Oryza sativa L.) is the major crop beside maize (Zea mays L.), pulses and oilseeds in this ecology. Small portion of uplands with assured irrigation is also grown with vegetables. Nearly one-sixth of world’s rice land is under uplands (about 20 million ha) of which (upland rice area) almost two-thirds is in Asia (IRRI 1975; Gupta and O’Toole 1986). Upland farmers, particularly in Asia, are generally resource poor having small land holdings, and majority of them practice subsistence farming. Despite its (uplands) disadvantaged natural conditions for field crops leading to poor productivity, soil microbial health is comparatively less disturbed due to minimum use of modern agrochemicals. This makes the ecology suitable for manipulating beneficial soil microbial resources in favour of crop production. Poor phosphorus (P) acquisition by crops is one major constraint of this ecology. On the other hand, the aerobic soil conditions support arbuscular mycorrhizal (AM) activities which are known to facilitate P acquisition in associated plants. The present article deals with avenues of harnessing ecosystem services rendered by AM fungi (AMF) for improving P nutrition of upland rice under rice-based cropping systems.


  1. Abdelmoneim TS, Tarek AMM, Almaghrabi OA, Hassan SA, Ismail A (2014) Increasing Plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Sci J 10:3273–3280Google Scholar
  2. Aide M, Picker J (1996) Potassium and phosphorus nutrition in rice. Information from 1996 Missouri Rice Research UpdateGoogle Scholar
  3. Aliyu R, Adamu AK, Muazu S, Alonge SO, Gregorio GB (2011) Tagging and validation of SSR markers to salinity tolerance QTLs in rice (Oryza spp.). In: Proceedings of international conference on Biology, Environment and Chemistry, vol 1. IACSIT Press, SingaporeGoogle Scholar
  4. Ambriz E, Baez-Perez A, Sanchez-Yanez JM, Moutoglis P, Villegas J (2010) Fraxinus-Glomus-Pisolithus symbiosis: plant growth and soil aggregation effects. Pedobiologia 53:369–373CrossRefGoogle Scholar
  5. Auge RM, Duan X, Ebel RC, AJW S (1994) Nonhydraulic signalling of soil drying in mycorrhizal maize. Planta 193:74–82CrossRefGoogle Scholar
  6. Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 109:1288–1293Google Scholar
  7. Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060PubMedCrossRefGoogle Scholar
  8. Baqual MF, Das PK (2006) Influence of Biofertilizers on macronutrient uptake by the mulberry plant and its impact on silkworm bioassay. Caspian J Environ Sci 4:98–109Google Scholar
  9. Barker SJ, Duplessis S, Tagu D (2002) The application of genetic approaches for investigations of mycorrhizal symbiosis. Plant Soil 244:85–95CrossRefGoogle Scholar
  10. Burleigh SH, Bechmann IE (2002) Plant nutrient transporter regulation in arbuscular mycorrhizas. Plant Soil 244:247–251CrossRefGoogle Scholar
  11. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854PubMedPubMedCentralGoogle Scholar
  12. Cavagnaro TR, Franz Bender S, Asghari HR, Van der Heijden MGA (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20:283–290. doi: 10.1016/j.tplants.2015.03.004 PubMedCrossRefGoogle Scholar
  13. Chakravarthi BK, Naravaneni R (2006) SSR marker based DNA fingerprinting and diversity study in rice (Oryzasativa L). Afr J Biotechnol 5:684–688Google Scholar
  14. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572PubMedCrossRefGoogle Scholar
  15. Davies FT, Olalde-Portugal V, Aguilera-Gomez L, Alvarado MJ, Ferrera-Cerrato RC, Boutton TW (2002) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic 92:347–359CrossRefGoogle Scholar
  16. Degens BP, Sparling GP, Abbott LK (1996) Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates. Appl Soil Ecol 3:149–159CrossRefGoogle Scholar
  17. Dhillion SS (1992) Host endophyte specificity of vesicular arbuscular mycorrhizal colonization of Oryzasativa L. at the pre-transplant stage in low or high phosphorus soil. Soil Biol Biochem 24:405–411CrossRefGoogle Scholar
  18. Diaz G, Azcón-Aguilar C, Honnubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249CrossRefGoogle Scholar
  19. Douds DD Jr, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 85:15–21CrossRefGoogle Scholar
  20. Douds DD Jr, Nagahashi G, Pfeffer PE, Reider C, Kayser WM (2006) On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Bioresour Technol 97:809–818PubMedCrossRefGoogle Scholar
  21. Eason WR, Webb KJ, Michaelson-Yeates TPT, Abberton MT, Griffith GW, Culshaw CM, Hooker JE, Dhanoa MS (2001) Effect of genotype of Trifolium repens on mycorrhizal symbiosis with Glomus mosse. J Agric Sci (Camb) 137:27–36CrossRefGoogle Scholar
  22. El-Malky MM, Fahmi AI, Kotb AA (2007) Detection of genetic diversity using microsatellites in rice (Oryza sativa L.) African Crop Science Conference Proceedings 8:597–603Google Scholar
  23. Fageria NK, Barbosa Filho MP, Catvalho JRP (1982) Response of upland rice to phosphorus fertilization on an Oxisol of Central Brazil. Agron J 74:51–56CrossRefGoogle Scholar
  24. Fattah OA (2013) Effect of Mycorrhiza and phosphorus on micronutrients uptake by soyabean plant grown in acid soil. Int J Agron Plant Prod 4:429–437Google Scholar
  25. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190PubMedCrossRefGoogle Scholar
  26. Fontenla S, Puntieri J, Ocampo JA (2001) Mycorrhizal associations in the Patagonian steppe, Argentina. Plant Soil 233:13–29CrossRefGoogle Scholar
  27. Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517–523CrossRefGoogle Scholar
  28. Galvàn GA, Kuyper TW, Burger K, Paul Keizer LC, Hoekstra RF, Kik C, Scholten OE (2011) Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi. Theor Appl Genet 122:947–960. doi: 10.1007/s00122-010-1501-8 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gao D, Sun L (2013) In vitro screening and molecular characterization of a bacterial blight resistance gene in rice. J Rice Res 1:104. doi: 10.4172/jrr.1000104 Google Scholar
  30. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryzasativa L. Genetics 169:1631–1638PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gaur A (1997) Inoculum production technology development of vesicular-arbuscular mycorrhizae. PhD Thesis, Department of Botany, University of Delhi, DelhiGoogle Scholar
  32. Gaur A, Adholeya A (2002) Arbuscular mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218. doi: 10.1007/s00374-002-0457-5 CrossRefGoogle Scholar
  33. Gaur A, Adholeya A, Mukerji KG (2000) On-farm production of VAM inoculum and vegetable crops in marginal soil amended with organic matter. Trop Agric 77:21–26Google Scholar
  34. Gianinazzi S, Gollotte A, Binet MN, Tuinen D, van Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorhizas in ecosystem services. Mycorrhiza 20:519–530PubMedCrossRefGoogle Scholar
  35. Gianinazzi-Pearson V (1984) Host-fungus specificity, recognition and compatibility in mycorrhizae. In: Verma DPS, Hohn T (eds) Genes involved in microbe–plant interactions. Springer, Wien, pp 225–253CrossRefGoogle Scholar
  36. Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know? In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 3–27. doi: 10.1007/978-3-540-78826-3_1 CrossRefGoogle Scholar
  37. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  38. Graham JH, Leonard RT, Menge JA (1981) Membrane mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552PubMedPubMedCentralCrossRefGoogle Scholar
  39. Güimil S, Chang H, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakely EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gupta PC, O’Toole JC (1986) Upland rice distribution. In: Upland rice: a global perspective, International Rice Research Institute Publications, Los Baños, Phillipines, pp 1–11Google Scholar
  41. Habte M, Manjunath A (1987) Soil solution phosphorus status and mycorrhizal dependency in Leucaenaleuco cephala. Appl Environ Microbiol 53:797–801PubMedPubMedCentralGoogle Scholar
  42. Harinikumar KM, Bagyaraj DJ (2005) Effect of crop rotation on native arbuscular mycorrhizal propagules in soil. Plant Soil 110:77–80CrossRefGoogle Scholar
  43. Harrier LA, Watson CA (2003) The role of arbscular mycorrhizal fungi in sustainable cropping systems. Adv Agron 79:185–225CrossRefGoogle Scholar
  44. Herrara TG, Duque DP, Almeida IP, Nunez GT, Pieters AJ, Martinez CP, Tohme JM (2008) Assessment of genetic diversity in Venezuelan rice cultivars using simple sequence repeat markers. Electron J Biotechnol 11 special issueGoogle Scholar
  45. Hetrick BAD, Wilson GWT, Gill BS, Cox TS (1995) Chromosome location of mycorrhizal responsive genes in wheat. Can J Bot 73:891–897CrossRefGoogle Scholar
  46. Hildebrandt U, Marjana R, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefGoogle Scholar
  47. Huang J, Lou S, Zeng R (2003) Mechanism of plant disease resistance induced by arbuscular mycorrhizal fungi. Ying Yong Sheng Tai XueBao 14:819–822Google Scholar
  48. International Rice Genome Sequencing Project (IRGSP) (2005)
  49. International Rice Research Institute (1975) Major research in upland rice. International Rice Research Institute Publications, Los Baños, Philippines, 255 pGoogle Scholar
  50. Itao E, Ella E, Kawanto N (1999) Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crop Res 64:75–90CrossRefGoogle Scholar
  51. Izaguirre-Mayoral ML, Carballo O, Carreno L, de Mejia MG (2000) Effects of arbuscular mycorrhizal inoculation on growth, yield, nitrogen, and phosphorus nutrition of nodulating bean varieties in two soil substrates of contrasting fertility. J Plant Nutr 23:1117–1133CrossRefGoogle Scholar
  52. Jamil M, Rana IA, Ali Z, Awan FS, Shahzad Z, Khan AS (2013) Estimation of genetic diversity in rice (Oryzasativa L.) genotypes using Simple Sequence Repeats. Mol Plant Breed 4:285–291Google Scholar
  53. Janos DP (1988) Mycorrhiza applications in tropical forestry: are temperate-zone approaches appropriate? In: FSP N (ed) Trees and mycorhiza. Forest Research Institute, Kulalumpur, pp 133–188Google Scholar
  54. Jasper DA, Abbot LK, Robson AD (1991) The effect of soil disturbance on vesicular arbuscular mycorrhizal fungi in soils from different vegetation type. New Phytol 118:471–476CrossRefGoogle Scholar
  55. Jing Z, Qu Y, Yu C, Pan D, Fan Z, Chen Z, Li C (2010) QTL analysis of yield-associated traits using an advanced backcross population derived from common wild rice (Oryza rufipogon L). Mol Plant Breed 1(1). doi: 10.5376/mpb.2010.01.0001
  56. Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterranean L. and hyphal transport of 32P and 15N. New Phytol 7:365–386Google Scholar
  57. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  58. Kaeppler SM, Parke JL, Mueller SM, Sr L, Charles S, Tracy F (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358–364CrossRefGoogle Scholar
  59. Kahiluoto H, Vestberg M (1998) The effect of arbuscular mycorrhiza on biomass production and phosphorus uptake from sparingly soluble sources by leek (Allium porrum L.) in Finnish field soil. Biol Agric Hortic 16:65–85CrossRefGoogle Scholar
  60. Kahiluoto H, Vestberg M (1999) Methods to create a non-mycorrhizal control for a bioassay of AM effectiveness. 2. Benomyl application and soil sampling time. Mycorrhiza 9:259–270CrossRefGoogle Scholar
  61. Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in a growth chamber. Plant Soil 227:191–206CrossRefGoogle Scholar
  62. Kahiluoto H, Ketoja E, Vestberg M (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79CrossRefGoogle Scholar
  63. Kebriyaee D, Kordrostami M, Rezadoost MH, Lahiji HS (2012) QTL analysis of agronomic traits in rice using SSR and AFLP markers. Notulae Scientia Biologicae 4:116–123Google Scholar
  64. Khaliq A, Sanders FE (2000) Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley. Soil Biol Biochem 32:1691–1696CrossRefGoogle Scholar
  65. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  66. Koide R (1991) Nutrient supply, nutrient demand and plant-response to mycorrhizal infection. New Phytol 117:365–386CrossRefGoogle Scholar
  67. Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet 101:438–448CrossRefGoogle Scholar
  68. Kruckelmann W (1975) Effects of fertilizers, soils, soil tillage and plant species on the frequency of Endogone chlamydospores and mycorrhizal infection in arable soils. In: Sanders FE, Mosse B, Tinker PB (eds) Endo-mycorrhizas. Academic Press, London, pp 511–535Google Scholar
  69. Langbridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395CrossRefGoogle Scholar
  70. Li XL, George E, Marschner H (1991a) Extension of the phosphorus depletion zone in VA-mycorrhizal clover in calcareous soil. Plant Soil 136:41–48CrossRefGoogle Scholar
  71. Li XL, Marschner H, George E (1991b) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57CrossRefGoogle Scholar
  72. Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481PubMedCrossRefGoogle Scholar
  73. Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198PubMedCrossRefGoogle Scholar
  74. Maiti D (2011) Improving activity of native arbuscular mycorrhizal fungi (AMF) for mycorrhizal benefits in agriculture: status and prospect. J Biofertil Biopestici (S1-001) 2:113. doi: 10.4172/2155-6202.S1-001
  75. Maiti D, Barnwal MK (2012) Optimization of phosphorus level for effective arbuscular-mycorrhizal activity in rainfed upland rice based cropping system. Ind Phytopath 65:334–339Google Scholar
  76. Maiti D, Variar M, Saha J (1995) Colonization of upland rice by native VAM under rainfed mono-cropped ecosystem. In: Roy AK, Sinha KK (eds) Recent advances in phytopathological research, M.D. Publications, New Delhi, pp 45–52Google Scholar
  77. Maiti D, Variar M, Singh RK (1996) Perpetuation of native VAM fungi under mono-cropped, rainfed upland agro-ecosystem. Mycorrhiza News 8:7–9Google Scholar
  78. Maiti D, Barnwal MK, Rana SK, Variar M, Singh RK (2006) Enhancing native arbuscular mycorrhizal association to improve phosphorus nutrition of rainfed upland rice (Oryza sativa L.) through cropping systems. Ind Phytopath 59:432–438Google Scholar
  79. Maiti D, Barnwal MK, Singh RK (2008) Exploring possibility of utilizing native arbuscular mycorrhizal fungi for improving phosphorus nutrition in transplanted rice (Oryzasativa L.) of plateau region. Ind Phytopath 61:302–304Google Scholar
  80. Maiti D, Barnwal MK, Mandal NP (2009a) Exploring possibilities of partial drought mitigation in upland rice (Oryza sativa L.) through enhancing native arbuscular mycorrhizal (AM) association. Mycorrhiza News 21:29–30Google Scholar
  81. Maiti D, Barnwal MK, Singh RK, Variar M (2009b) A new protocol for on-farm production method of arbuscular mycorrhizal fungal mass inoculum for rainfed upland rice. Ind Phytopath 62:31–36Google Scholar
  82. Maiti D, Toppo NN, Variar M (2011a) Integration of crop rotation and arbuscular mycorrhizal (AM) fungal inoculum application for enhancing native AM activity to improve phosphorus nutrition of upland rice (Oryzasativa L.) Mycorrhiza 21:659–667PubMedCrossRefGoogle Scholar
  83. Maiti D, Variar M, Singh RK (2011b) Optimizing tillage schedule for maintaining activity of the arbuscular-mycorrhizal fungal population in a rainfed upland rice (Oryzasativa L.) agro-ecosystem. Mycorrhiza 21(3):167–171. doi: 10.1007/s00572-010-0324-4 PubMedCrossRefGoogle Scholar
  84. Maiti D, Variar M, Singh RK (2012) Rice based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity to improve phosphorus nutrition of upland rice (Oryza sativa L.) Biol Fert Soils 48:67–73. doi: 10.1007/s00374-011-0609-6 CrossRefGoogle Scholar
  85. Maiti D, Singh CV, Variar M, Mandal NP, Anantha MS (2013) Impact of rainfall pattern on native arbuscular-mycorrhizal activity influencing phosphorus utilization by direct seeded rainfed upland rice. Proc Natl Acad Sci India Sect B Biol Sci 83:159–162CrossRefGoogle Scholar
  86. Mararthi B, Guleria S, Mohapatra T, Parsad R, Mariappan N, Kurungara VK, Atwal SS, Prabhu KV, Singh NK (2012) QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.) BMC Plant Biol 12:137. doi: 10.1186/1471-2229-12-137 CrossRefGoogle Scholar
  87. Marleen I, Sylvie C, Stephane D (2011) Methods for large scale production of AM fungi: past, present and future. Mycorrhiza 21:1–16CrossRefGoogle Scholar
  88. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Cambridge. ISBN: 978-0-12-473542-2Google Scholar
  89. Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol 150:525–532CrossRefGoogle Scholar
  90. Martin F (2001) Frontiers in molecular mycorrhizal research genes, loci, dots and spins. New Phytol 150:499–507CrossRefGoogle Scholar
  91. Matsumoto T, Wu J, Kanamori H (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  92. McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99PubMedCrossRefGoogle Scholar
  93. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Watton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, Declereck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  94. McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122CrossRefGoogle Scholar
  95. McGonigle TP, Millar MH (1993a) Mycorrhizal development and phosphorus absorption in maize under conventional and reduced tillage. Soil Sci Soc Am J 57:1002–1006CrossRefGoogle Scholar
  96. McGonigle TP, Millar MH (1993b) Response of mycorrhizae and shoot phosphorus of maize to the frequency and timing of soil disturbance. Mycorrhiza 4:63–68CrossRefGoogle Scholar
  97. Menendez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhiza populations associated with natural and cultivated vegetation on a site of Buenos Aires province. Argentina Biol Fertil Soil 33:373–381CrossRefGoogle Scholar
  98. Miller RM, Jastrow JD (1992) The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen MF (ed) Mycorrhizal functioning. Chapman & Hall., London, pp 438–467Google Scholar
  99. Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of mycorrhizal fungi and phosphorus fertilzation on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137CrossRefGoogle Scholar
  100. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Guohua X, Jakobsen I, Avraham AL, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceuos species. Plant J 42:236–250PubMedCrossRefGoogle Scholar
  101. Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959PubMedCrossRefGoogle Scholar
  102. Ocampo JA, Hayman DS (1981) Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. New Phytol 87:333–343CrossRefGoogle Scholar
  103. Ocampo A, Martin J, Hayman D (1980) Influence of plant interaction on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytol 84:27–35CrossRefGoogle Scholar
  104. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283PubMedCrossRefGoogle Scholar
  105. Oliveira RS, Vosatka M, Dodd JC, Castro PMC (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23–31PubMedCrossRefGoogle Scholar
  106. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. PNAS (USA) 19:13324–13329CrossRefGoogle Scholar
  107. Prabhakaran A, Paramasivam K, Rajesh T, Rajarajan D (2010) Molecular characterization of rice land races using SSR markers. Electron J Plant Breed 1:512–516Google Scholar
  108. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria and medicinal plants. Springer, Cham, pp 247–260Google Scholar
  109. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N and Varma A (2017) Introduction to mycorrhiza: Historical development. In: Mycorrhiza (eds. Varma A, Prasad R and Tuteja N) Springer International Publishing Switzerland 1-7Google Scholar
  110. Rahman MS, Molla MR, Alam MS, Rahman L (2009) DNA fingerprinting of rice (Oryzasativa L.) cultivars using microsatellite markers. Aust J Crop Sci 3:122–128Google Scholar
  111. Rana SK, Maiti D, Barnwal MK, Singh RK, Variar M (2002) Effect of rice (Oryzasativa L.)-based cropping systems on vesicular arbuscular mycorrhizal colonization, P uptake and yield. Ind J Agric Sci 72:400–403Google Scholar
  112. Rangarajan M, Santhanakrishnan P (1995) Plant growth promoting Rhizobacteria and biofertilizers increase the fresh leaf yield and nutrient content in Morusalba. In: Adholeys A, Singh S (eds) Proceedings of the third national conference on mycorrhiza. TERI, New Delhi, pp 189–191Google Scholar
  113. Rathi S, Baruah AR, Chowdhury RK, Sarma RN (2011) QTL analysis of seed dormancy in indigenous rice of Assam. India Cereal Res Commun 39:137–146CrossRefGoogle Scholar
  114. Ravenskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas as hyphal P transport to plant. New Phytol 129:611–618CrossRefGoogle Scholar
  115. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498PubMedPubMedCentralCrossRefGoogle Scholar
  116. Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156CrossRefGoogle Scholar
  117. Sahrawat KL, Abekoe MK, Diatta S, Tian G, Ishida F, Keatinge D, Carsky R, Wendt J (2001) Application of inorganic phosphorus fertilizer. In: Proceedings of the Symposium Sponsored by the American Society, Argon, USA, 5–9 Nov 2009, pp 225–246Google Scholar
  118. Salim ME, Mohamed HA, Gamal MA, Siddiqui MH (2013) Role of mycorrhizal fungi in tolerance of wheat genotypes to salt stress. Afr J Microbiol Res 7:1286–1295CrossRefGoogle Scholar
  119. Sally ES, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057CrossRefGoogle Scholar
  120. Sandhu N, Jain S, Kumar A, Mehla BS, Jain R (2013) Genetic variation, linkage mapping of QTL and correlation studies for yield, root and agronomic traits for adaptation. BMC Genet 14:104. doi: 10.1186/1471-2156-14-104 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Schwartz MW, Horksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbot LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515PubMedCrossRefGoogle Scholar
  122. Sharma TR, Madhav MS, Singh BK, Shankar P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK (2005) High-resolution mapping, cloning and molecular characterization of the Pi-k (h) gene of rice, which confers resistance to Magnaporthegrisea. Mol Gen Genomics 274:569–578CrossRefGoogle Scholar
  123. Sharma SK, Ramesh A, Sharma MP, Joshi OP, Govaerts B, Steenwearth KL, Karlen DL (2010) Microbial community structure and diversity as indicators for evaluating soil quality. In: Lichtfouse E (ed) Biodiversity, biofuel, agroforestry and conservation agriculture: sustainable agriculture reviews. Springer, Dordrecht, pp 317–358. doi: 10.1007/978-90-481-9513-8_11 CrossRefGoogle Scholar
  124. Shukla A, Kumar A, Jha A, Nageawar Rao DVK (2011) Phosphorus threshold for arbuscular-mycorrhizal colonization of crops and tree seedlings. Biol Fertil Soils 48:109–116CrossRefGoogle Scholar
  125. Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. Sustainable agriculture and forestry. Springer, Dordrecht, pp 1–35CrossRefGoogle Scholar
  126. Sieverdin E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft fur Techniske Zusammenarbeit (GTZ) GmbH, Eschborn, 371 pGoogle Scholar
  127. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with land plants. Nature 363:67–69CrossRefGoogle Scholar
  128. Siqueira JO, Saggin OJ Jr (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255CrossRefGoogle Scholar
  129. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, 605 p. ISBN: 0-12-652840-3Google Scholar
  130. Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonization of many economically important crop plants? Plant Soil 348:63–79CrossRefGoogle Scholar
  131. Srimathi PL, Kumutha K, Arthee R, Pandiyarajan P (2014) Studies on the role of arbuscular mycorrhiza fungal enhancement on soil aggregate stability. Res J Recent Sci 3:19–28Google Scholar
  132. Tawaraya K, Tokairin K, Wagatsuma T (2001) Dependence of Allium fistulosum cultivars on the arbuscular mycorrhizal fungus Glomus fasciculatum. Appl Soil Ecol 17:119–124CrossRefGoogle Scholar
  133. Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38:847–867CrossRefGoogle Scholar
  134. Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729–743CrossRefGoogle Scholar
  135. Toppo NN, Maiti D (2011) Native arbuscular mycorrhizal fungal diversity in rice based cropping systems under rainfed ecology (Abstr.). In: Proceedings of the International Conference on “Microbial Biotech. for sustainable development”, PU, Chandigarh, India, 3–6 Nov 2011, p 415Google Scholar
  136. Toppo NN, Srivastava AK, Maiti D (2013) Effect of arbuscular mycorrhizal (AM) inoculation on upland rice root system. The Bioscan 8:533–536Google Scholar
  137. Umakant GC, Bagyaraj DJ (1998) Response of mulberry saplings to inoculation with VA mycorrhizal fungi and Azotobacter. Sericologia 38:669–675Google Scholar
  138. Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560PubMedPubMedCentralCrossRefGoogle Scholar
  139. Versaw WK, Chiou TJ, Harrison MJ (2002) Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi. Plant Soil 244:239–245CrossRefGoogle Scholar
  140. Vierheilig H (2004) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166–1176CrossRefGoogle Scholar
  141. Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630PubMedPubMedCentralCrossRefGoogle Scholar
  142. Vosatka M, Rydlova J, Sudova R, Vohnik M (2006) Mycorrhizal fungi as helping agents in phytoremediation of degraded and contaminated soils. In: Mackova M, Dowling DN, Mace T (eds) Phytoremediation and rhizoremediation. Springer, Berlin, pp 237–255CrossRefGoogle Scholar
  143. Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252PubMedPubMedCentralCrossRefGoogle Scholar
  144. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  145. Wilcox HE (1991) Mycorrhizae. In: Waisel Y, Eshel A, Kafkati U (eds) The plant root: the hidden half. Marcel Dekker, New York, pp 731–765Google Scholar
  146. Wright SF, Upadhyaya AA (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 16:575–586CrossRefGoogle Scholar
  147. Wu TH, Hao WY, Lin XG, Shi YQ (2002) Screening of arbuscular mycorrhizal fungi for the re-vegetation of eroded red soils in subtropical China. Plant Soil 239:225–235CrossRefGoogle Scholar
  148. Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29CrossRefGoogle Scholar
  150. Zhao X, Qin Y, Jia B, Kim SM, Lee HS, Eun MY, Kim KM, Sohn JK (2013) Comparison and analysis of QTLs, epistatic effects and QTL × environment interactions for yield traits using DH and RILs populations in rice. J Integr Agric 12:198–208CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dipankar Maiti
    • 1
    Email author
  • Neha Nancy Toppo
    • 1
  • Mukesh Nitin
    • 1
  • Binit Kumar
    • 1
  1. 1.Central Rainfed Upland Rice Research StationICAR-National Rice Research Institute (formerly Central Rice Research Institute)HazaribagIndia

Personalised recommendations