Basic and Applied Research for Desert Truffle Cultivation

  • Asunción MorteEmail author
  • Manuela Pérez-Gilabert
  • Almudena Gutiérrez
  • Francisco Arenas
  • José Eduardo Marqués-Gálvez
  • Juan Julián Bordallo
  • Antonio Rodríguez
  • Luis Miguel Berná
  • Cecilia Lozano-Carrillo
  • Alfonso Navarro-Ródenas


This chapter summarizes the latest basic and applied advances in desert truffle research carried out to improve our knowledge of the biodiversity, physiology, biotechnology, and cultivation of these hypogeous and edible fungi. ITS-rDNA sequences in phylo-geographic studies and host plant and soil pH characteristics have been the key to describing eight new desert truffle species. The production of desert truffle mycorrhizal plants has been improved by using β-cyclodextrin and bioreactors for mycelium culture and native beneficial bacteria (PGPR and MHB) to increase seedling survival and mycorrhization. Some fungal enzymes have also been characterized in Terfezia claveryi ascocarps. The presence of alkaline phosphatase both in mycelia and ascocarps indicates that this enzyme plays an important role during the life cycle of T. claveryi, while acid phosphatase might be involved in a process that takes place during the ascocarp stage. Numerous desert truffle plantations have been established in Spain in the last 10 years. A high density of mycorrhizal plants combined with a proper irrigation are two important factors to stimulate ascocarp production. The combination of a high rate of intracellular colonization together with the fine-tuned expression of fungal and plant aquaporins could result in a morpho-physiological adaptation of this symbiosis in drought conditions. Moreover, desert truffle sylviculture is proposed for improving truffle production and for conserving the natural areas where desert truffle grow.



This work was supported by projects 19484/PI/14 (FEDER and Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, Spain) and CGL2016-78946-R (AEI/FEDER, UE). JEMG thanks MINECO for a PhD grant (DI-14-06904). FA thanks MINECO for financial resources from the Youth Employment Initiative (JEI) and the European Social Fund (ESF), National System of Youth Guarantee (PEJ-2014-A-83659). ANR thanks the University of Murcia for a postdoctoral contract.


  1. Andrino A, Morte A, Honrubia M (2012) Method for producing plants of the Cistaceae family that establish mycorrhiza with different desert truffle species. Patent ES2386990, SpainGoogle Scholar
  2. Arenas F (2014) Optimización del crecimiento miceliar y producción de inóculo de la trufa del desierto Terfezia claveryi Chatin en biorreactor. Máster Thesis, University of Murcia, SpainGoogle Scholar
  3. Bonifacio E, Morte A (2014) Soil properties. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles, Soil biology, vol 38. Chapter 4. Springer, Berlin, pp 57–67. doi: 10.1007/978-3-642-40096-4_4 CrossRefGoogle Scholar
  4. Bordallo JJ, Rodríguez A (2014) Cryptic and new species. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles, Soil biology, vol 38. Chapter 3. Springer, Berlin, pp 39–53. doi: 10.1007/978-3-642-40096-4_3 CrossRefGoogle Scholar
  5. Bordallo JJ, Rodriguez A, Honrubia M, Morte A (2012) Terfezia canariensis sp. nov. una nueva especie de trufa encontrada en las Islas Canarias. Cantarela 56:1–8Google Scholar
  6. Bordallo JJ, Rodríguez A, Muñoz-Mohedano JM, Suz LM, Honrubia M, Morte A (2013) Five new Terfezia species from the Iberian Peninsula. Mycotaxon 124:189–208CrossRefGoogle Scholar
  7. Bordallo JJ, Rodríguez A, Kaounas V, Camello F, Honrubia MA (2015) Two new Terfezia species from Southern Europe. Phytotaxa 230:239–249CrossRefGoogle Scholar
  8. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682CrossRefPubMedGoogle Scholar
  9. Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063CrossRefPubMedGoogle Scholar
  10. Chávez D, Machuca A, Aguirre C, Palfner G (2014) Optimización del crecimiento miceliar de los hongos ectomicorrízicos Lactarius quieticolor y Rhizopogon roseolus utilizando metodología de superficie de respuesta. XXII Congreso Latinoamericano de Microbiología-ALAM, Cartagena de Indias, Colombia, 4–8 noviembre 2014Google Scholar
  11. Gordon MH (2001) The development of oxidative rancidity in foods. In: Pokorny J, Yanishlieva N, Gordon M (eds) Antioxidants in food. Practical applications. CRC Press, Washington, DC, pp 7–20CrossRefGoogle Scholar
  12. Gouws A, De Wet T, Abdullah F, Hassan A, Honrubia M, Morte A (2014) Desert truffle research in U.A.E. Abstract book of Second Symposium on Hypogeous Fungi in Mediterranean basin (HYPOGES2) & Fifth Congress Tuber aestivum/uncinatum European Scientific Group (TAUESG5), Universitè Mohammed V, Rabat (Morocco), 9–13 April 2014, p 17Google Scholar
  13. Gutiérrez A, Morte A, Honrubia M (2003) Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza 13:299–307CrossRefPubMedGoogle Scholar
  14. Hanson JR (2008) The chemistry of fungi. Royal Society of Chemistry, CambridgeGoogle Scholar
  15. Honrubia M, Gutiérrez A, Morte A (2001) Desert truffle plantation from south-east Spain. In: Edible mycorrhizal mushrooms and their cultivation. Proceedings of the second international conference on Edible Mycorrhizal Mushrooms, Christchurch, New Zealand, pp 3–5Google Scholar
  16. Honrubia M, Andrino A, Morte A (2014) Domestication: preparation and maintenance of plots. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles. Soil biology, vol 38. Springer, Berlin, pp 367–387. Chapter 22. ISBN 978-3-642-40095-7. doi: 10.1007/978-3-642-40096-4_22
  17. Iotti M, Piattoni F, Leonardi P, Hall IR, Zambonelli A (2016) First evidence for truffle production from plants inoculated with mycelial pure cultures. Mycorrhiza 26:793–798. doi: 10.1007/s00572-016-0703-6 CrossRefPubMedGoogle Scholar
  18. Kagan-Zur V, Turgeman T, Roth-Bejerano N, Morte A, Sitrit Y (2014a) Benefits conferred to plants. In: Desert truffles. Soil biology, vol 38. Springer, Berlin, pp 93–104. doi: 10.1007/978-3-642-40096-4_7
  19. Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) (2014b) Desert truffles. Phylogeny, physiology, distribution and domestication, Soil biology, vol 38. Springer, Berlin. doi: 10.1007/978-3-642-40096-4 Google Scholar
  20. Kovăcs G, Calonge D, Martín MP (2011) The diversity of Terfezia desert truffles: new species and a highly variable species complex with intrasporocarpic nrDNA ITS heterogeneity. Mycologia 103:841–853. doi: 10.3852/10-312 CrossRefPubMedGoogle Scholar
  21. Kuribayashi T, Kaise H, Uno C, Hara T, Hayakawa T, John T (2002) Purification and characterization of lipoxygenase from Pleurotus ostreatus. J Agric Food Chem 50:1247–1253CrossRefPubMedGoogle Scholar
  22. León Morcillo RJ, Ocampo JA, García Garrido JM (2012) Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza. Plant Signal Behav 7:1584–1588CrossRefPubMedPubMedCentralGoogle Scholar
  23. López-Nicolas JM, Andreu-Sevilla AJ, Carbonell-Barrachina AA, Garcia-Carmona F (2009) Effects of addition of alpha-cyclodextrin on the sensory quality, volatile compounds, and color parameters of fresh pear juice. J Agric Food Chem 57:9668–9675CrossRefPubMedGoogle Scholar
  24. López-Nicolás JM, Pérez-Gilabert M, Lozano-Carrillo C, García-Carmona F, Morte A (2013) Mycelium growth stimulation of the desert truffle Terfezia claveryi Chatin by β-cyclodextrin. Biotechnol Prog 29:1558–1564CrossRefPubMedGoogle Scholar
  25. Morte A, Andrino A (2014) Domestication: preparation of mycorrhizal seedlings. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles, Soil biology, vol 38. Chapter 21. Springer, Berlin, pp 343–365. doi: 10.1007/978-3-642-40096-4_21 CrossRefGoogle Scholar
  26. Morte A, Honrubia M (1992) In vitro propagation of Helianthemum almeriense Pau (Cistaceae). Agronomie 12:807–809CrossRefGoogle Scholar
  27. Morte A, Honrubia M (1995) Improvement of mycorrhizal synthesis between micropropagated Helianthemum almeriense plantlets with Terfezia claveryi (desert truffle). In: Elliot TJ (ed) Science and cultivation of edible fungi, vol 2. Balkema, Rotterdam, pp 863–868Google Scholar
  28. Morte A, Honrubia M (1997) Micropropagation of Helianthemum almeriense. In: Bajaj YPS (ed) High-tech and micropropagation VI, vol 40. Springer, Berlin. ISBN 3-540-61607-1Google Scholar
  29. Morte A, Cano A, Honrubia M, Torres P (1994) In vitro mycorrhization of micropropagated Helianthemun almeriense plantlets with Terfezia claveryi (desert truffle). Agric Sci Finland 3:309–314Google Scholar
  30. Morte A, Dieste C, Díaz G, Gutiérrez A, Navarro A, Honrubia M (2004) Production of Terfezia olbiensis mycelial inoculum in a bioreactor. Act 1er Symp Champignons Hypoges du Basin Mediterraneen, Rabat, Morocco, pp 146–149Google Scholar
  31. Morte A, Honrubia M, Gutiérrez A (2008) Biotechnology and cultivation of desert truffles. In: Varma A (ed) Mycorrhiza: state of the art genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 467–483CrossRefGoogle Scholar
  32. Morte A, Zamora M, Gutiérrez A, Honrubia M (2009) Desert truffle cultivation in semiarid Mediterranean areas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas – functional processes and ecological impact. Springer, Berlin, pp 221–233. doi: 10.1007/978-3-540-87978-7_15 CrossRefGoogle Scholar
  33. Morte A, Navarro-Ródenas A, Nicolás E (2010) Physiological parameters of desert truffle mycorrhizal Helianthemun almeriense plants cultivated in orchards under water deficit conditions. Symbiosis 52:133–139. doi: 10.1007/s13199-010-0080-4 CrossRefGoogle Scholar
  34. Morte A, Andrino A, Honrubia M, Navarro-Ródenas A (2012) Terfezia cultivation in arid and semiarid soils. In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms, Soil biology, vol 34. Springer, Berlin. doi: 10.1007/978-3-642-33823-6_14 CrossRefGoogle Scholar
  35. Murcia MA, Martínez-Tomé M, Jiménez AM, Vera AM, Honrubia M, Parras P (2002) Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. J Food Prot 65:1614–1622CrossRefPubMedGoogle Scholar
  36. Murcia MA, Martínez-Tomé M, Vera A, Morte A, Gutiérrez A, Honrubia M, Jiménez AM (2003) Effect of industrial processing on desert truffles Terfezia claveryi Chatin and Picoa juniperi Vittadini: proximate composition and fatty acids. J Sci Food Agric 83:535–541CrossRefGoogle Scholar
  37. Navarro-Ródenas A, Morte A, Pérez-Gilabert M (2009) Partial purification, characterization and histochemical localization of alkaline phosphatase from ascocarps of the edible desert truffle Terfezia claveryi Chatin. Plant Biol 11:678–685. doi: 10.1111/j.1438-8677.2008.00172.x CrossRefPubMedGoogle Scholar
  38. Navarro-Ródenas A, Lozano-Carrillo MC, Pérez-Gilabert M, Morte A (2011) Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles. Mycorrhiza 21:247–253. doi: 10.1007/s00572-010-0329-z CrossRefPubMedGoogle Scholar
  39. Navarro-Ródenas A, Pérez-Gilabert M, Torrente P, Morte A (2012a) The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza 22:565–575. doi: 10.1007/s00572-012-0434-2 CrossRefPubMedGoogle Scholar
  40. Navarro-Ródenas A, Ruíz-Lozano JM, Kaldenhoff R, Morte A (2012b) The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Mol Plant Microbe Interact 25:259–266CrossRefPubMedGoogle Scholar
  41. Navarro-Ródenas A, Bárzana G, Nicolás E, Carra A, Schubert A, Morte A (2013) Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Mol Plant Microbe Interact 26:1068–1078CrossRefPubMedGoogle Scholar
  42. Navarro-Ródenas A, Berná LM, Lozano-Carrillo C, Andrino A, Morte A (2016) Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza 26:769–779CrossRefPubMedGoogle Scholar
  43. Oliw EH (2002) Plant and fungal lipoxygenases. Prostaglandins Other Lipid Mediat 68–69:313–323CrossRefPubMedGoogle Scholar
  44. Pérez-Gilabert M, Morte A, Honrubia M, García-Carmona F (2001a) Monophenolase activity of latent Terfezia claveryi tyrosinase: characterization and histochemical localization. Physiologia Plantarum 113:203–209CrossRefPubMedGoogle Scholar
  45. Pérez-Gilabert M, Morte A, Honrubia M, García-Carmona F (2001b) Partial purification, characterization, and histochemical localization of fully latent desert truffle (Terfezia claveryi Chatin) polyphenol oxidase. J Agric Food Chem 49:1922–1927CrossRefPubMedGoogle Scholar
  46. Pérez-Gilabert M, Sánchez-Felipe I, García-Carmona F (2005a) Purification and partial characterization of lipoxygenase from desert truffle (Terfezia claveryi Chatin) ascocarps. J Agric Food Chem 53:3666–3671CrossRefPubMedGoogle Scholar
  47. Pérez-Gilabert M, Sánchez-Felipe I, Morte A, García-Carmona F (2005b) Kinetic properties of lipoxygenase from desert truffle (Terfezia claveryi Chatin) ascocarps: effect of inhibitors and activators. J Agric Food Chem 53:6140–6145CrossRefPubMedGoogle Scholar
  48. Pérez-Gilabert M, García-Carmona F, Morte A (2014) Enzymes in Terfezia claveryi ascocarps. In: Desert truffles, Phylogeny, physiology, distribution and domestication, vol 38. Chapter 16. Springer, Berlin, pp 243–260. doi: 10.1007/978-3-642-40096-4_16 CrossRefGoogle Scholar
  49. Rossi MJ, Souza JAR, Oliveira VL (2002) Inoculum production of the ectomycorrhizal fungus Pisolithus microcarpus in an airlift bioreactor. Appl Microbiol Biotechnol 59:175–181CrossRefPubMedGoogle Scholar
  50. Roth-Bejerano N, Navarro-Ródenas A, Guitérrez A (2014) Types of mycorrhizal associations. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles. Soil biology, vol 38. Springer, Berlin, pp 69–80. Chapter 5. ISBN 978-3-642-40095-7. doi: 10.1007/978-3-642-40096-4_5
  51. Santiago-Marín MM (2015) Producción de micelio de Picoa lefebvrei (Pat.) Maire en biorreactor. Máster Thesis, University of Murcia, SpainGoogle Scholar
  52. Shavit E (2014) The history of desert truffle use. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles. Springer, Berlin, pp 217–242. doi: 10.1007/978-3-642-40096-4_15 CrossRefGoogle Scholar
  53. Slama A, Fortas Z, Boudabous A, Neffati M (2010) Cultivation of an edible desert truffle (Terfezia boudieri Chatin). Afr J Microbiol Res 4:2350–2356Google Scholar
  54. Su C, Oliw EH (1998) Manganese lipoxygenase, purification, and characterization. J Biol Chem 273:13072–13079CrossRefPubMedGoogle Scholar
  55. Trinci AFJ, Whittaker C (1968) Self-inhibition of spore germination in Aspergillus nidulans. Trans Br Mycol Soc 51:594–596CrossRefGoogle Scholar
  56. Zambonelli A, Donnini D, Rana GL, Fascetti S, Benucci GMN, Iotti M, Morte A, Khabar L, Bawadekji A, Piattoni F, Compagno R, Venturella G (2014) Hypogeous fungi in Mediterranean maquis, arid and semi-arid forests. Plant Biosyst 148:392–401CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Asunción Morte
    • 1
    Email author
  • Manuela Pérez-Gilabert
    • 2
  • Almudena Gutiérrez
    • 1
  • Francisco Arenas
    • 1
  • José Eduardo Marqués-Gálvez
    • 1
  • Juan Julián Bordallo
    • 1
  • Antonio Rodríguez
    • 1
  • Luis Miguel Berná
    • 1
  • Cecilia Lozano-Carrillo
    • 1
  • Alfonso Navarro-Ródenas
    • 1
  1. 1.Dpto. Biología Vegetal (Botánica)Universidad de MurciaMurciaSpain
  2. 2.Dpto. Bioquímica y Biología Molecular-A, Facultad de BiologíaUniversidad de MurciaMurciaSpain

Personalised recommendations