Advertisement

Microbial Symbiosis and Bioactive Ingredients of Medicinal Plants

  • Divya Kilam
  • Priyanka Sharma
  • Abha AgnihotriEmail author
  • Amit Kharkwal
  • Ajit Varma
Chapter

Abstract

Medicinal plants have been used widely for their bioactive ingredients as they are highly potent and have least side effects. This has led to a surge in demand for medicinal plants for producing higher quantity and good quality bioactive compounds. Symbiotic association of microorganisms with plants has been shown to affect the production and quality of active ingredients. However, the effect is not consistent and is seen to vary under different microbial associations. This chapter elucidates the studies on microbial symbiosis with medicinal plants and the effect of this interaction on medicinally important bioactive ingredients. The role of both nutritional and non-nutritional pathways in this interaction has also been discussed.

Notes

Acknowledgements

Authors are grateful to DBT for partial financial assistance and DST for providing confocal microscope.

References

  1. Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of Arbuscular Mycorrhiza in Castanospermum australe A. Cunn. and C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117Google Scholar
  2. Ahlawat S, Saxena P, Ali A, Abdin M Z (2016) Piriformospora indica elicitation of withaferin A biosynthesis and biomass accumulation in cell suspension cultures of Withania somnifera. Symbiosis 1–10. doi: 10.1007/s13199-015-0364-9
  3. Alam M, Khaliq A, Sattar A, Shukla RS, Anwar M, Dharni S (2011) Synergistic effect of Arbuscular Mycorrhizal fungi and Bacillus subtilis on the biomass and essential oil yield of rose-scented geranium (Pelargonium graveolens). Arch Agron Soil Sci 57:889–898CrossRefGoogle Scholar
  4. Algar E, Gutierrez-Mañero FJ, Bonilla A, Lucas JA, Radzki W, Ramos-Solano B (2012) Pseudomonas fluorescens N21. 4 metabolites enhance secondary metabolism isoflavones in soybean (Glycine max) calli cultures. J Agric Food Chem 60:11080–11087PubMedCrossRefGoogle Scholar
  5. Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an Arbuscular Mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258PubMedCrossRefGoogle Scholar
  6. Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A (2016) Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol 32:1–10CrossRefGoogle Scholar
  7. Arpana J, Bagyaraj DJ, Prakasa Rao EVS, Parameswaran TN, Abdul Rahiman BA (2008) Symbiotic response of patchouli [Pogostemon cablin (Blanco) Benth.] to different Arbuscular Mycorrhizal fungi. Adv Environ Biol 2:20–24Google Scholar
  8. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16CrossRefGoogle Scholar
  9. Bagde US, Prasad R, Varma A (2010) Interaction of Piriformospora indica with medicinal plants and of economic importance. Afr J Biotechnol 9:9214–9226Google Scholar
  10. Bagde US, Prasad R, Varma A (2014) Impact of culture filtrate of Piriformospora indica on biomass and biosynthesis of active ingredient aristolochic acid in Aristolochia elegans Mart. Int J Biol 1:29–37Google Scholar
  11. Bahadori F, Ashorabadi ES, Mirza M, Matinizade M, Abdosi V (2013) Improved growth, essential oil yield and quality in Thymus daenensis Celak on mycorrhizal and plant growth promoting rhizobacteria inoculation. Int J Agron Plant Prod 4:3384–3391Google Scholar
  12. Bajaj R, Agarwal A, Rajpal K, Asthana S, Prasad R, Kharkwal AC, Kumar R, Sherameti I, Oelmüller R, Varma A (2014) Co-cultivation of Curcuma longa with Piriformospora indica enhances the yield and active ingredients. Am J Curr Microbiol 2:6–17Google Scholar
  13. Baldi A, Jain A, Gupta N, Srivastava AK, Bisaria VS (2008) Co-culture of Arbuscular Mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671–1677PubMedCrossRefGoogle Scholar
  14. Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771CrossRefGoogle Scholar
  15. Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657PubMedCrossRefGoogle Scholar
  16. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  17. Basiewicz M, Weiß M, Kogel KH, Langen G, Zorn H, Zuccaro A (2012) Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal Biol 116:204–213PubMedCrossRefGoogle Scholar
  18. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66–76CrossRefGoogle Scholar
  19. Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387PubMedCrossRefGoogle Scholar
  20. Bhuyan SK, Bandyopadhyay P, Kumar P, Mishra DK, Prasad R, Kumari A, Upadhyaya KC, Varma A, Yadava PK (2015) Interaction of Piriformospora indica with Azotobacter chroococcum. Sci Rep 5:13911. doi: 10.1038/srep13911 CrossRefGoogle Scholar
  21. Bothe H, Turnau K, Regvar M (2010) The potential role of Arbuscular Mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457PubMedCrossRefGoogle Scholar
  22. Bottcher H (1965) Miracle drugs. Zora, Zagreb, pp 23–139Google Scholar
  23. Bucio JL, Campos-Cuevas JC, Hernandez-Calderon E, Valasquez-Bacerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root system architecture through an auxin and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20:207–217CrossRefGoogle Scholar
  24. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecol pp:2–9Google Scholar
  25. Chadha N, Mishra M, Prasad R, Varma A (2014) Root endophytic fungi: Research update. J Biol Life Sci USA 5:135–158CrossRefGoogle Scholar
  26. Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two Arbuscular Mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181CrossRefGoogle Scholar
  27. Clark RB, Zeto SK (2000) Mineral acquisition by Arbuscular Mycorrhizal plants. J Plant Nutr 23:867–902CrossRefGoogle Scholar
  28. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494PubMedCrossRefGoogle Scholar
  29. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plant 24:1250–1319Google Scholar
  30. Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7:103–112PubMedPubMedCentralCrossRefGoogle Scholar
  31. Das A, Prasad R, Srivastava RB, Deshmukh S, Rai MK, Varma A (2013) Co-cultivation of plants with medicinal plants: case studies. In: Varma A, Kost G, Oelmuller R (eds) Piriformospora indica: sebacinales and their biotechnological applications. Springer, Berlin, pp 149–171CrossRefGoogle Scholar
  32. Dastborhan S, Zehtab-Salmasi S, Nasrollahzadeh S, Tavassoli AR (2011) Effect of plant growth-promoting rhizobacteria and nitrogen fertilizer on yield and essential oil of german chamomile (Matricaria chamomilla L.). International Symposium on Medicinal and Aromatic Plants IMAPS2010 and History of Mayan Ethnopharmacology IMAPS2011 964, pp 121–128Google Scholar
  33. De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, De Jesús Sánchez-Colín M, Muñoz-Muñiz OD (2011) Arbuscular Mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil 349:367–376CrossRefGoogle Scholar
  34. Del Rosario CL, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22CrossRefGoogle Scholar
  35. Del Rosario CL, Santoro MV, Reinoso H, Travaglia C, Giordano W, Banchio E (2015) Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Mentha piperita). J Chem Ecol 41:149–158CrossRefGoogle Scholar
  36. Dutta SC, Neog B (2016) Accumulation of secondary metabolites in response to antioxidant activity of turmeric rhizomes co-inoculated with native Arbuscular Mycorrhizal fungi and plant growth promoting rhizobacteria. Sci Hortic 204:179–184CrossRefGoogle Scholar
  37. Fan JH, Yang GT, Mu LQ, Zhou JH (2006) Effect of AM fungi on the content of berberine, jatrorrhizine and palmatine of Phellodendron amurense seedings. Protect Forest Sci Technol 5:24–26Google Scholar
  38. Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702PubMedGoogle Scholar
  39. Ghorbanpour M, Majnoun HN, Rezazadesh SA, Omidi M, Khavazi K, Hatami M (2011) Variations of root and shoot tropane alkaloids production of Hyoscyamus niger under two rhizobacteria strains inoculation and water deficit stress. J Med Plants 10:160–170Google Scholar
  40. Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37:350–360Google Scholar
  41. Ghorbanpour M, Hosseini N, Khodae Motlagh M, Solgi M (2014) The effects of inoculation with pseudomonads rhizobacteria on growth. Quantity and quality of essential oils in sage (Salvia officinalis L). Plant J Med Plants 4:89–100Google Scholar
  42. Gianinazzi S, Gollotte A, Binet MN, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530PubMedCrossRefGoogle Scholar
  43. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332. doi: 10.3389/fmicb.2016.00332 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Glesinger L (1954) Medicine through centuries. Zora, Zagreb, pp 21–38Google Scholar
  45. Gorelick J, Bernstein N (2014) Elicitation: an underutilized tool for the development of medicinal plants as a source for therapeutic secondary metabolites. Adv Agron 124:201–230CrossRefGoogle Scholar
  46. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500Google Scholar
  47. Großkinsky DK, Van der Graaff E, Roitsch T (2016) Regulation of abiotic and biotic stress responses by plant hormones. Plant Pathogen Resist Biotechnol 131. doi: 10.1002/9781118867716.ch7 Google Scholar
  48. Gu R, Wang Y, Long B, Kennelly E, Wu S, Liu B, Long C (2014) Prospecting for bioactive constituents from traditional medicinal plants through ethnobotanical approaches. Biol Pharm Bull 37:903–915PubMedCrossRefGoogle Scholar
  49. Guenther E (2013) The essential oils, History-origin in plants-production-analysis, vol 1. Read Books, New YorkGoogle Scholar
  50. Guo Q, Cheng L, Liu Z (2010) Study on influence of arbuscular mycorrhizal fungi Pinellia ternata yield and chemical composition. Zhongguo Zhong yao za zhi Zhongguo zhongyao zazhi. J Chinese Materia Medica 35:333–338Google Scholar
  51. Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the Vesicular–Arbuscular Mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79PubMedCrossRefGoogle Scholar
  52. Harman GE (2011) Multifunctional fungal plant symbiont: new tools to enhance plant growth and productivity. New Phytol 189:647–649PubMedCrossRefGoogle Scholar
  53. Harrison MJ (1999) Molecular and cellular aspects of the Arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389PubMedCrossRefGoogle Scholar
  54. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584PubMedCrossRefGoogle Scholar
  55. Hemashenpagam N, Selvaraj T (2011) Effect of Arbuscular Mycorrhizal (AM) fungus and plant growth promoting rhizo-microorganisms (PGPR’s) on medicinal plant Solanum viarum seedlings. J Environ Biol 32:579. doi: 10.3389/fpls.2013.00356 PubMedGoogle Scholar
  56. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25PubMedCrossRefGoogle Scholar
  57. Honggang WGW (1989) Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in chinese medicinal herb Datura stramonium L. Sci Agric Sin 5:008Google Scholar
  58. Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointerfaces 60:7–11PubMedCrossRefGoogle Scholar
  59. Jasim B, Geethu PR, Mathew J, Radhakrishnan EK (2015) Effect of endophytic Bacillus sp. from selected medicinal plants on growth promotion and diosgenin production in Trigonella foenum-graecum. Plant Cell Tissue Organ Cult 122:565–572CrossRefGoogle Scholar
  60. Johnson JM, Alex T, Oelmüller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52:103–122Google Scholar
  61. Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306PubMedCrossRefGoogle Scholar
  62. Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463CrossRefGoogle Scholar
  63. Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311PubMedCrossRefGoogle Scholar
  64. Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587PubMedCrossRefGoogle Scholar
  65. Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci Hortic 129:329–334CrossRefGoogle Scholar
  66. Karthikeyan B, Jaleel CA, Azooz MM (2009) Individual and combined effects of Azospirillum brasilense and Pseudomonas fluorescens on biomass yield and ajmalicine production in Catharanthus roseus. Acad J Plant Sci 2:69–73Google Scholar
  67. Karthikeyan B, Joe MM, Jaleel CA, Deiveekasundaram M (2010) Effect of root inoculation with plant growth promoting rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don. Natura Croatica 19:205–212Google Scholar
  68. Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446PubMedCrossRefGoogle Scholar
  69. Kilam D, Saifi M, Abdin MZ, Agnihotri A, Varma A (2015) Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 66:149–156CrossRefGoogle Scholar
  70. Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Dark septate endophytic pleosporalean genera from semiarid areas. Persoonia-Mol Phylogeny Evol Fungi 35:87–100CrossRefGoogle Scholar
  71. Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2015) The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. The plant microbiome and its importance for plant and human health. doi: 10.1128/MMBR.00050-14
  72. Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite-what decides? Curr Opin Plant Biol 9:358–363PubMedCrossRefGoogle Scholar
  73. Kohler J, Caravaca F, Carrasco L, Roldan A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487CrossRefGoogle Scholar
  74. Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115:650–656CrossRefGoogle Scholar
  75. Lermen C, Morelli F, Gazim ZC, Da Silva AP, Gonçalves JE, Dragunski DC, Alberton O (2015) Essential oil content and chemical composition of Cymbopogon citratus inoculated with arbuscular mycorrhizal fungi under different levels of lead. Ind Crop Prod 76:734–738CrossRefGoogle Scholar
  76. Lichtenthaler HK (2009) Biosynthesis and accumulation of isoprenoid carotenoids and chlorophylls and emission of isoprene by leaf chloroplasts. Bull Georg Nat Acad Sci 3:81–94Google Scholar
  77. Liu J, Wu L, Wei S, Xiao X, Su C, Jiang P, Yu Z (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). J Plant Growth Regul 52:29–39CrossRefGoogle Scholar
  78. Lum MR, Hirsch AM (2003) Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorous in a nutrient-limiting environment. J Plant Growth Regul 21:368–382CrossRefGoogle Scholar
  79. Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S, Arora NK (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28:3015–3024PubMedCrossRefGoogle Scholar
  80. Malla R, Prasad R, Kumari R, Giang PH, Pokharel U, Oelmüller R, Varma A (2004) Phosphorus solubilizing symbiotic fungus: Piriformospora indica. Endocytobiosis Cell Res 15:579–600Google Scholar
  81. Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194CrossRefGoogle Scholar
  82. Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Kapoor R (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345–357PubMedCrossRefGoogle Scholar
  83. Marschner H (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Cambridge, 651 pp. Hardcover ISBN: 9780123849052Google Scholar
  84. Martinez MJA, Lazaro RM, Del Olmo LMB, Benito PB (2008) Anti-infectious activity in the anthemideae tribe. Stud Nat Prod Chem 35:445–516CrossRefGoogle Scholar
  85. Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128PubMedCrossRefGoogle Scholar
  86. McKersie DB (1996) Oxidative stress. http://www.agronomy.psu.edu/Courses/AGRO518/Oxygen.htm. Accessed 25 Oct 2000
  87. Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–174CrossRefGoogle Scholar
  88. Meng JJ, He XL (2011) Effects of AM fungi on growth and nutritional contents of Salvia miltiorrhiza Bge. under drought stress. J Agr Univ Hebei 34:51–61Google Scholar
  89. Morone-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell Tissue Organ Cult 93:139–149CrossRefGoogle Scholar
  90. Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N (2016) Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci 7:1574. doi: 10.3389/fpls.2016.01574 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nautiyal CS, Chauhan PS, Das Gupta SM, Seem K, Varma A, Staddon WJ (2010) Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L. World J Microbiol Biotechnol 26:1393–1399CrossRefGoogle Scholar
  92. Nell M, Voetsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.) J Sci Food Agric 89:1090–1096CrossRefGoogle Scholar
  93. Oliveira MS, Campos MA, Silva FS (2015) Arbuscular mycorrhizal fungi and vermi compost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agric 95:522–528PubMedCrossRefGoogle Scholar
  94. Pandey MM, Rastogi S, Rawat AKS (2013) Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013:1–12. doi: 10.1155/2013/376327 Google Scholar
  95. Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370PubMedCrossRefGoogle Scholar
  96. Pedone-Bonfim MV, Lins MA, Coelho IR, Santana AS, Silva FS, Maia LC (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J Sci Food Agric 93:1479–1484PubMedCrossRefGoogle Scholar
  97. Prasad A, Kumar S, Pandey A, Chand S (2012) Microbial and chemical sources of phosphorus supply modulate the yield and chemical composition of essential oil of rose-scented geranium (Pelargonium species) in sodic soils. Biol Fertil Soils 48:117–122CrossRefGoogle Scholar
  98. Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024PubMedCrossRefGoogle Scholar
  99. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria and medicinal plants. Springer, Cham, pp 247–260Google Scholar
  100. Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30Google Scholar
  101. Refish NMR, Talib AJ, Jian-Wei G, Fu C, Yu L (2016) Promoting role of Bacillus Subtilis BS87 on the growth and content of some natural products in the medicinal plants Anoectochilus Roxburghii and A. Formosanus. Adv Life Sci 6:31–38Google Scholar
  102. Rojas-Andrade R, Cerda-García-Rojas C, Frías-Hernández J, Dendooven L, Olalde-Portugal V, Ramos-Valdivia A (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the pre-symbiotic phase. Mycorrhiza 13:49–52PubMedCrossRefGoogle Scholar
  103. Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798PubMedCrossRefGoogle Scholar
  104. Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182PubMedCrossRefGoogle Scholar
  105. Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202PubMedCrossRefGoogle Scholar
  106. Schulz B (2006) Mutualistic interactions with fungal root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Berlin, pp 261–279CrossRefGoogle Scholar
  107. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686PubMedCrossRefGoogle Scholar
  108. Selvaraj T, Sumithra P (2011) Effect of Glomus aggregatum and plant growth promoting rhizo-microorganisms on growth, nutrition and content of secondary metabolites in Glycyrrhiza glabra L. Indian J Appl Pure Biol 26:283–290Google Scholar
  109. Sharma D, Kapoor R, Bhatnagar AK (2007) Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn.: an endangered medicinal herb. World J Microbial Biotechnol 24:395–400CrossRefGoogle Scholar
  110. Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138PubMedCrossRefGoogle Scholar
  111. Sharma P, Kharkwal AC, Abdin MZ, Varma A (2014) Piriformospora indica improves micro propagation, growth and phytochemical content of Aloe vera L. Plants. Symbiosis 64:11–23CrossRefGoogle Scholar
  112. Sieniawska E, Baj T, Dudka J, Gieroba R, Swiatek L, Rajtar B, Polz-Dacewicz M (2013) Cytotoxicity, antioxidant activity and an effect on CYP3A4 and CYP2D6 of Mutellina purpurea L. extracts. Food Chem Toxicol 52:188–192PubMedCrossRefGoogle Scholar
  113. Singh A, Sharma J, Rexer KH, Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica – a revolutionary plant growth promoting fungus. Curr Sci 79:1548–1554Google Scholar
  114. Singh AN, Singh AR, Kumari M, Rai MK, Varma A (2003) Biotechnology importance of Piriformospora indica – a novel symbiotic mycorrhiza-like fungus: an overview. Indica J Biotechnol 2:65–75Google Scholar
  115. Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44PubMedCrossRefGoogle Scholar
  116. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London, p 800Google Scholar
  117. Teng HR, He XL (2005) Effects of different AM fungi and N levels on the flavonoid content of Bupleuruin scorzonerifolium Wild. J Shanxi Agric Sci 4:53–54Google Scholar
  118. Toro M, Azcon R, Barea J (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32) P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412PubMedPubMedCentralGoogle Scholar
  119. Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349–353PubMedCrossRefGoogle Scholar
  120. Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297PubMedCrossRefGoogle Scholar
  121. Tucakov J (1971) Healing with plants–phytotherapy. Culture, Beograd, pp 180–190Google Scholar
  122. Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture from genes to mycorrhiza application. Birkhauser Verlag, Basel, pp 137–149CrossRefGoogle Scholar
  123. Urcoviche RC, Gazim ZC, Dragunski DC, Barcellos FG, Alberton O (2015) Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Ind Crop Prod 67:103–107CrossRefGoogle Scholar
  124. Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136CrossRefGoogle Scholar
  125. Varma A, Verma S, Sudha Sahay N, Buttehorn B, Franken P (1999) Piriformospora indica, a cultivable plant growth promoting root endophyte. Appl Environ Microbiol 65:2741–2744PubMedPubMedCentralGoogle Scholar
  126. Varma A, Singh A, Sudha Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2000) Mycota, vol IX. Springer, Berlin, Chapter 8, pp 225–253Google Scholar
  127. Varma A, Singh A, Sudha Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Fungal associations, The mycota, vol IX. Springer, Berlin, pp 123–150Google Scholar
  128. Varma A, Sherameti I, Tripathi S, Prasad R et al (2012) The symbiotic fungus Piriformospora indica: review. In: Hock B (ed) Fungal associations, The mycota, vol IX, 2nd edn. Springer, Berlin, pp 231–254CrossRefGoogle Scholar
  129. Wei G, Wang H (1991) Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia briq. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi. Chinese J Materia Medica 16:139–142Google Scholar
  130. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhao JL, He XL (2011) Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Botan Boreali-Occiden Sin 20:184–189Google Scholar
  132. Zhao X, Wang BW, Yan XF (2006) Effect of arbuscular mycorrhiza on camptothecin content in Camptotheca acuminate seedlings. Acta Ecol Sin 26:1057–1062Google Scholar
  133. Zhao JL, Deng HY, He XL (2009) Effects of AM fungi on the quality of trueborn Angelica dahurica from Hebei province. Acta Agric Bor Sin 24:299–302Google Scholar
  134. Zhao JL, Zhou LG, JY W (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide–protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522CrossRefGoogle Scholar
  135. Zhong JH, Fan JH (2007) Effects of AM fungi on the berberine content in Phellodendron chinense seedlings [J]. Nat Hortic 12:013Google Scholar
  136. Zhu ZB, Fan JY, Guo QS, Liu ZY, Zhu GS (2015) The growth and medicinal quality of Epimedium wushanense are improved by an isolate of dark septate fungus. Pharma Biol 53:1344–1351CrossRefGoogle Scholar
  137. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769PubMedCrossRefGoogle Scholar
  138. Zitterl-Eglseer K, Nell M, Lamien-Meda A, Steinkellner S, Wawrosch C, Kopp B, Novak J (2015) Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of pharmacologically active compounds in Angelica archangelica L. Acta Physiol Plant 37:1–11CrossRefGoogle Scholar
  139. Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504PubMedCrossRefGoogle Scholar
  140. Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156PubMedCrossRefGoogle Scholar
  141. Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 390:129–142CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Divya Kilam
    • 1
  • Priyanka Sharma
    • 1
  • Abha Agnihotri
    • 1
    Email author
  • Amit Kharkwal
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia

Personalised recommendations