Skip to main content

The Management of the Mycorrhizal Soil Infectivity: Ecological and Technical Approaches

  • Chapter
  • First Online:

Abstract

Arbuscular Mycorrhizal Fungi have a large potential to help increase global food security. They constitute the most important microbial symbiosis for the majority of terrestrial plant species. Their ecological functions in the productivity and stability of agroecosystems have been recognized for many years. Many studies have shown that these symbionts improved plant growth and plant resistance to biotic and abiotic stresses. Despite the proven potential of mycorrhizal symbiosis to sustainably improve the productivity of agroecosystems, this biotechnology is still under exploited. This failure mainly results from technical difficulties to mass-produced fungal inoculum of high quality and a lack of knowledge about the biological factors regulating the soil receptivity of arbuscular mycorrhizal inoculation. In order to promote mycorrhizal soil infectivity, two main approaches could be considered: (1) the “reductionist” approach that consists to add into the soil, a large quantity of fungal propagules of a specialized AMF and (2) the “holistic” approach that aims to conserve and restore native AMF diversity and abundance. In this chapter, we will examine the environmental factors that affect the mycorrhizal diversity and abundance and limit both approaches as they can both be of interest, trying to explain to what environmental solution they would be more adapted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott LK, Robson AD (1982) The role of vesicular–arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Res 33:389–408

    Article  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    Article  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bennett AE, Daniell TJ, White PJ (2013) Benefits of breeding crops for yield response to soil microorganisms. In: de Bruijn FJ (ed) Molecular ecology of the rhizosphere. Wiley, New York, NY, pp 17–27

    Chapter  Google Scholar 

  • Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130

    Article  Google Scholar 

  • Celebi SZ, Demir S, Celebi R, Durak ED, Yilmaz IH (2010) The effect of Arbuscular Mycorrhizal Fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Eur J Soil Biol 46:302–305

    Article  Google Scholar 

  • Conversa G, Lazzizera C, Bonasia A, Elia A (2013) Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biol Fertil Soils 49:691–703

    Article  CAS  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Article  Google Scholar 

  • Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare root forest nurseries. Plant Soil 138:169–176

    Article  Google Scholar 

  • Duponnois R, Ouahmane L, Kane A, Thioulouse J, Hafidi M, Boumezzough A, Prin Y, Baudoin E, Galiana A, Dreyfus B (2011) Nurse shrubs increased the early growth of Cupressus seedlings by enhancing. Soil Biol Biochem 43:2160–2168

    CAS  Google Scholar 

  • Duponnois R, Ramanankierana H, Hafidi M, Baohanta R, Baudoin E, Thioulouse J, Sanguin H, Bâ AM, Galiana A, Bally R, Lebrun M, Prin Y (2013) Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment : some examples of nursing plant species that improve the soil mycorrhizal potential. C R Biol 336:265–272

    Article  PubMed  Google Scholar 

  • Del Fabbro C, Prati D (2014) Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens. Basic Appl Ecol 15:534–542

    Article  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444

    Article  PubMed  Google Scholar 

  • Fester T, Sawers R (2011) Progress and challenges in agricultural applications of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 30:459–470

    Article  Google Scholar 

  • Franco AD, Ortiz FEC, Contreras MGL, Santacruz GAA, Cabrera OAG (2013) Growth, mineral absorption and yield of maize inoculated with microbe strains. Afr J Agric Res 8:3764–3769

    Article  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Germani G, Plenchette C (2004) Potential of Crotalaria species as green manure crops for the management of pathogenic nematodes and beneficial mycorrhizal fungi. Plant Soil 266:333–342

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S, Trouvelot A (1985) Evaluation of the infectivity and the effectiveness of indigenous vesicular-arbuscular fungal populations in some agricultural soils in Burgundy. Can J Bot 63:1521–1524

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Hagh ED, Mirshekari B, Ardakani MR, Farahvash F, Rejali F (2016) Optimizing phosphorus use in sustainable maize cropping via mycorrhizal inoculation. J Plant Nutr 39:1348–1356

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. For Ecol Manag 81:1–17

    Article  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant bio-diversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Ijdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present and future. Mycorrhiza 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen I, Gazey C, Abbott LK (2001) Phosphate transfert by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol 149:95–103

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turanu K, Barea M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young PW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Karasawa T, Takebe M (2011) Temporal or spatial arrangements of cover crops to promote arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal crops. Plant Soil 353:355–366

    Article  Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonization improves fruit yield and water use efficiency in water (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil 253:287–292

    Article  CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Klironomos JN, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facilli E, Dickie IA, Bever JD (2011) Forces the structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189:366–370

    Article  PubMed  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders JR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci U S A 101:2369–2374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koorem K, Saks U, Söber V, Uibopuu A, Opik M, Zobel M, Moora M (2012) Effects of arbuscular mycorrhiza on community composition and seedling recruitment in temperate forest understory. Basic Appl Ecol 13:663–672

    Article  Google Scholar 

  • Li H, Wang C, Li X, Xiang D (2013) Inoculating maize fields with earthworms (Aporrectodea trapezoids) and an arbuscular mycorrhizal fungus (Rhizophagus intraradices) improves mycorrhizal community structure and increases plant nutrient uptake. Biol Fertil Soils 49:1167–1178

    Article  CAS  Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J:1–12

    Google Scholar 

  • Medina-Gonzales OA, Sylvia DM, Jr K (1987) Growth response of tropical forage legumes to inoculation with Glomus intraradices. Trop Grasslands 21:24–27

    Google Scholar 

  • Van Noordwijk M, Lawson G, Soumaré A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementary. In: Ong CK, Huxley PW (eds) Tree-crop interactions: a physiological approach. CAB International, Wallington, UK, pp 319–364

    Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, Van der Heijden MGA, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Opik M, Moora M, Liira J, Zobel M (2006) Composition of root colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Pellegrino E, Bedini S, Avio L, Bonari E, Giovanetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean soil. Soil Biol Biochem 43:367–376

    Article  CAS  Google Scholar 

  • Ratti N, Kumar S, Verma HN, Gautam SP (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopognon matinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol Res 156:145–149

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) The mycorrhizal symbiosis. Academic Press, San Diego, CA

    Google Scholar 

  • Suri VK, Choudhary K, Chander G, Verma TS (2011) Influence of vesicular arbuscular mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus-deficient acid alfisol of Western Himalayas. Commun Soil Sci Plant Anal 42(10):1177–1186

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tisserand E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, Van der Heijden MGA (2010) Positive effects of organing farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  CAS  PubMed  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wahbi S, Prin Y, Maghraoui T, Sanguin H, Thioulouse J, Oufdou K, Hafidi M, Duponnois R (2015) Field application of the mycorrhizal fungus rhizophagus irregularis increases the yield of wheat crop and affects soil microbial functionalities. Am J Plant Sci 6:3205–3215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Duponnois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lies, A., Prin, Y., Duponnois, R., Ferhout, H. (2017). The Management of the Mycorrhizal Soil Infectivity: Ecological and Technical Approaches. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-57849-1_11

Download citation

Publish with us

Policies and ethics