Skip to main content

Stretching Method

  • Chapter
  • First Online:
Grid Generation Methods

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1530 Accesses

Abstract

In many practical problems, there may exist narrow zones in the physical domains where the dependent quantities undergo large variations. These zones include shock waves in compressible flows, shear layers in laminar and turbulent flows, expansion fans, contact surfaces, slipstreams, phase-change interfaces, and boundary and interior layers, which, when interacting, can present significant difficulties in the numerical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablow, C. M. (1982). Equidistant mesh for gas dynamics calculations. Applied Mathematics and Computation, 10(11), 859–863.

    Article  MathSciNet  MATH  Google Scholar 

  • Ablow, C. M., & Schechter, S. (1978). Campylotropic coordinates. Journal of Computational Physics, 27, 351–363.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Acharya, S., & Moukalled, F. H. (1990). An adaptive grid solution procedure for convection-diffusion problems. Journal of computational physics, 91, 32–54.

    Google Scholar 

  • Adjerid, S., & Flaherty, J. F. (1986). A moving finite element method with error estimation and refinement for one-dimensional time-dependent partial differential equations. SIAM Journal on Numerical Analysis, 23, 778–796.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Anderson, D. A. (1983). Adaptive grid methods for partial differential equations. In K. N. Ghia & U. Ghia (Eds.), Advances in grid generation (pp. 1–15). Houston: ASME.

    Google Scholar 

  • Anderson, D. A., & Rajendran, N. (1984). Two approaches toward generating orthogonal adaptive grids. AIAA Paper 84-1610.

    Google Scholar 

  • Anderson, D. A., & Steinbrenner, J. (1986). Generating adaptive grids with a conventional grid scheme. AIAA Paper 86-0427.

    Google Scholar 

  • Andrew, B., & Whrite, J. R. (1979). On selection of equidistributing meshes for two-point boundary-value problems. SIAM Journal on Numerical Analysis, 16(3), 472–502.

    Google Scholar 

  • Babuska, I., & Rheinboldt, W. C. (1978). A-posteriori error estimates for the finite element method. International Journal for Numerical Methods in Engineering, 12, 1597–1615.

    Google Scholar 

  • Bahvalov, N. S. (1969). On optimization of the methods of the numerical solution of boundary-value problems with boundary layers. Journal of Computational Mathematics and Mathematical Physics, 9(4), 842–859 (Russian) [English transl.: USSR Computational Mathematics and Mathematical Physics, 9 (1969)].

    Google Scholar 

  • Bayliss, A., & Garbey, M. (1995). Adaptive pseudo-spectral domain decomposition and the approximation of multiple layers. Journal of Computational Physics, 119(1), 132–141.

    Article  MATH  ADS  Google Scholar 

  • Berger, A. E., Han, H., & Kellog, R. B. (1984). A priori estimates of a numerical method for a turning point problem. Mathematics of Computation, 42(166), 465–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Blom, J. G., & Verwer, J. G. (1989). On the use of arclength and curvature in a moving-grid method which is based on the methods of lines. Report NM-N8402, CWI, Amsterdam.

    Google Scholar 

  • Boor, C. (1974). Good approximation by splines with variable knots. Lecture Notes in Mathematics, 363, 12–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Brish, N. J. (1954). On boundary-value problems for the equation \(\epsilon y^{\prime \prime }=f(x,y,y^{\prime })\) with small \(\epsilon \). Doklady Akademii Nauk USSR. XCV(3), 429–432 (Russian).

    Google Scholar 

  • Carey, G. F. (1979). Adaptive refinement and nonlinear fluid problems. Computer Methods in Applied Mechanics and Engineering, 17/18, 541–560.

    Article  MATH  ADS  Google Scholar 

  • Catheral, D. (1991). The adaption of structured grids to numerical solutions for transonic flow. International Journal for Numerical Methods in Engineering, 32, 921–937.

    Article  ADS  Google Scholar 

  • Chen, K. (1994). Error equidistribution and mesh adaptation. SIAM Journal on Scientific Computing, 15(4), 798–818.

    Article  MathSciNet  MATH  Google Scholar 

  • Danaev, N. T. (1979). One approach for generating grids with node clustering in the zones of large gradients. Chisl. Metody Mekhan. Sploshnoi Sredy, 10(4), 60–74 (Russian).

    Google Scholar 

  • Darmaev, T. G., & Liseikin, V. D. (1987). A method for generating multidimensional adaptive grids. Modelirovanie v mekhan. Novosibirsk., 1(1), 49–57 (Russian).

    Google Scholar 

  • Davis, S. F., & Flaherty, J. E. (1982). An adaptive finite element method for initial boundary-value problems for partial differential equations. SIAM Journal on Scientific and Statistical Computing, 3, 6–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Denny, V. E., & Landis, R. B. (1972). A new method for solving two-point boundary-value problems using optimal node distribution. Journal of Computational Physics, 9(1), 120–137.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Dorfi, E. A., & Drury, L. O’C. (1987). Simple adaptive grids for 1-D initial value problems. Journal of Computational Physics, 69, 175–195.

    Google Scholar 

  • Dwyer, H. A., & Onyejekwe, O. O. (1985). Generation of fully adaptive and/or orthogonal grids. In Proceedings of the 9th International Conference on Numerical Methods in Fluid Dynamics (pp. 422–426). Saclay.

    Google Scholar 

  • Dwyer, H. A., Kee, R. J., & Sanders, B. R. (1980). Adaptive grid method for problems in fluid mechanics and heat transfer. AIAA Journal, 18(10), 1205–1212.

    Article  MATH  ADS  Google Scholar 

  • Eiseman, P. R. (1985). Grid generation for fluid mechanics computations. Annual Review of Fluid Mechanics, 17, 487–522.

    Article  MATH  ADS  Google Scholar 

  • Eiseman, P. R. (1987). Adaptive grid generation. Computer Methods in Applied Mechanics and Engineering, 64, 321–376.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Eriksson, L. E. (1982). Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation. AIAA Journal, 20, 1313–1320.

    Article  MATH  ADS  Google Scholar 

  • Furzland, R. M., Verwer, J. G., & Zegeling, P. A. (1990). A numerical study of three moving grid methods for 1-D PDEs which are based on the method of lines. Journal of Computational Physics, 89, 349–388.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Gnoffo, P. A. (1983). A finite-volume, adaptive grid algorithm applied to planetary entry flowfields. AIAA Journal, 21(9), 1249–1254.

    Article  MATH  ADS  Google Scholar 

  • Hawken, D. F., Gottlieb, J. J., & Hansen, J. S. (1991). Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations. Journal of Computational Physics, 95, 254–302.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Huang, W., & Sloan, D. M. (1994). A simple adaptive grid method in two dimensions. SIAM Journal on Scientific Computing, 15(4), 776–797.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, W., Ren, Y., & Russel, R. D. (1994). Moving mesh PDEs based on the equidistribution principle. SIAM Journal on Numerical Analysis, 31, 709–730.

    Google Scholar 

  • Klopfer, G. H., & McRae, D. D. (1981). The nonlinear modified equation approach to analysing finite difference schemes. AIAA Paper 81-1029.

    Google Scholar 

  • Knupp, P. M. (1991). The direct variational grid generation method extended to curves. Applied Mathematics and Computation, 43, 65–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Knupp, P. M. (1992). A robust elliptic grid generator. Journal of Computational Physics, 100, 409–418.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Liseikin, V. D. (1984). On the numerical solution of singularly perturbed equations with a turning point. Journal of Computational Mathematics and Mathematical Physics, 24(12), 1812–1818 (Russian) [English transl.: USSR Computational Mathematics and Mathematical Physics, 24 (1984)]

    Google Scholar 

  • Liseikin, V. D. (1986). On the numerical solution of equations with a power boundary layer. Journal of Computational Mathematics and Mathematical Physics, 26(12), 1813–1820 (Russian).

    Google Scholar 

  • Liseikin, V. D. (1993). Estimates for derivatives of solutions to differential equations with boundary and interior layers. Siberian Mathematical Journal, July, 1039–1051.

    Google Scholar 

  • Liseikin, V. D. (1996). Construction of structured adaptive grids - a review. Computational Mathematics and Mathematical Physics, 36(1), 1–32.

    Google Scholar 

  • Liseikin, V. D. (2001). Layer resolving grids and transformations for singular perturbation problems. Utrecht: VSP.

    Google Scholar 

  • Liseikin, V. D., & Petrenko, V. E. (1989). Adaptive invariant method for the numerical solution of problems with boundary and interior layers. Computer Center SD AS USSR, Novosibirsk (Russian).

    Google Scholar 

  • Liseikin, V. D., & Yanenko, N. N. (1977). Selection of optimal numerical grids. Chisl. Metody Mekhan. Sploshnoi Sredy, 8(7), 100–104 (Russian).

    Google Scholar 

  • Lomov, S. A. (1964). Power boundary layer in problems with a small parameter. Doklady Akademii Nauk USSR, 184(3), 516–519 (Russian).

    Google Scholar 

  • Lorenz, J. (1982). Nonlinear boundary-value problems with turning points and properties of difference schemes. Lecture Notes in Mathematics, 942, 150–169.

    Article  MathSciNet  Google Scholar 

  • Lorenz, J. (1984). Analysis of difference schemes for a stationary shock problems. SIAM Journal on Numerical Analysis, 21(6), 1038–1053.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Miller, K. (1981). Moving finite elements II. SIAM Journal on Numerical Analysis, 18, 1033–1057.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Miller, K. (1983). Alternate codes to control the nodes in the moving finite element method. Adaptive Computing Methods for Partial Differential Equations (pp. 165–182). Philadelphia: SIAM.

    Google Scholar 

  • Miller, K., & Miller, R. N. (1981). Moving finite elements I. SIAM Journal on Numerical Analysis, 18, 1019–1032.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Morrison, D. (1962). Optimal mesh size in the numerical integration of an ordinary differential equation. Journal of the Association for Computing Machinery, 9, 98–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagumo, M. (1937). Uber die Differentialgleichung \(y^{\prime \prime }=f(x, y, y^{\prime })\). Proceedings of the Physico-Mathematical Society of Japan, 19, 861–866.

    MATH  Google Scholar 

  • Nakahashi, K., & Deiwert, G. S. (1985). A three-dimensional adaptive grid method. AIAA Paper 85-0486.

    Google Scholar 

  • Nakamura, S. (1983). Adaptive grid relocation algorithm for transonic full potential calculations using one-dimensional or two-dimensional diffusion equations. In K. N. Ghia & U. Ghia (Eds.), Advances in grid generation (pp. 49–58). Houston: ASME.

    Google Scholar 

  • Noack, R. W., & Anderson, D. A. (1990). Solution adaptive grid generation using parabolic partial differential equations. AIAA Journal, 28(6), 1016–1023.

    Article  MATH  ADS  Google Scholar 

  • Pereyra, V., & Sewell, E. G. (1975). Mesh selection for discrete solution of boundary-value problems in ordinary differential equations. Numerische Mathematik, 23, 261–268.

    Article  MATH  Google Scholar 

  • Petzold, L. R. (1987). Observations on an adaptive moving grid method for one-dimensional systems of partial differential equations. Applied Numerical Mathematics, 3, 347–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Pierson, B. L., & Kutler, P. (1980). Optimal nodal point distribution for improved accuracy in computational fluid dynamics. AIAA Journal, 18, 49–53.

    Article  ADS  Google Scholar 

  • Polubarinova-Kochina, P. Ya. (1977). Theory of motion of phreatic water. Moscow (Russian): Nauka.

    Google Scholar 

  • Potter, D. E., & Tuttle, G. H. (1973). The construction of discrete orthogonal coordinates. Journal of Computational Physics, 13, 483–501.

    Article  MATH  ADS  Google Scholar 

  • Rai, M. M., & Anderson, D. A. (1981). Grid evolution in time asymptotic problems. Journal of Computational Physics, 43, 327–344.

    Article  MATH  ADS  Google Scholar 

  • Rai, M. M., & Anderson, D. A. (1982). Application of adaptive grids to fluid flow problems with asymptotic solution. AIAA Journal, 20, 496–502.

    Article  MATH  ADS  Google Scholar 

  • Rheinboldt, W. C. (1981). Adaptive mesh refinement process for finite element solutions. International Journal for Numerical Methods in Engineering, 17, 649–662.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Roberts, G. O. (1971). In Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Russell, R. D., & Christiansen, J. (1978). Adaptive mesh selection strategies for solving boundary-value problems. SIAM Journal on Numerical Analysis, 15, 59–80.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Soni, B. K., & Yang, J.-C. (1992). General purpose adaptive grid generation system. AIAA Paper 92-0664.

    Google Scholar 

  • Steinberg, S., & Roache, P. J. (1990). Anomalies in grid generation on curves. Journal of Computational Physics, 91, 255–277.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Sweby, P. K., & Yee, H. C. (1990). On the dynamics of some grid adaptation schemes. In N. P. Weatherill, P. R. Eiseman, J. Hauser, & J. F. Thompson (Eds.), Numerical Grid Generation in Computational Field Simulation and Related Fields (p. 467). Swansea: Pineridge.

    Google Scholar 

  • Thomas, P. D., Vinokur, M., Bastianon, R. A., & Conti, R. J. (1972). Numerical solution for three-dimensional inviscid supersonic flow. AIAA Journal, 10(7), 887–894.

    Article  MATH  ADS  Google Scholar 

  • Thompson, J. F. (1985). A survey of dynamically-adaptive grids in the numerical solution of partial differential equations. Applied Numerical Mathematics, 1, 3–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Tolstykh, A. I. (1973). A method for the numerical solution of Navier-Stokes equations of a compressible gas flow for a wide range of Reynolds number. Doklady Akademii Nauk SSSR, 210, 48–51 (Russian).

    Google Scholar 

  • Tolstykh, A. I. (1978). Concentration of grid points in the process of solving and using high-accuracy schemes for the numerical investigation of viscous gas flows. Computational Mathematics and Mathematical Physics, 18, 139–153 (Russian) [English transl.: USSR Computational Mathematics and Mathematical Physics, 18, 134–138 (1979)].

    Google Scholar 

  • Vinokur, M. (1983). On one-dimensional stretching functions for finite-difference calculations. Journal of Computational Physics, 50, 215–234.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Vulanovic, R. (1984). Mesh construction for numerical solution of a type of singular perturbation problems. Numerical Methods and Approximation Theory, 137–142.

    Google Scholar 

  • Wathen, A. J. (1990). Optimal moving grids for time-dependent partial differential equations. Journal of Computational Physics, 101, 51–54.

    Google Scholar 

  • Weatherill, N. P., & Soni, B. K. (1991). Grid adaptation and refinement in structured and unstructured algorithms. In A. S. Arcilla, J. Hauser, P. R. Eiseman, & J. F. Thompson (Eds.), Numerical grid generation in computational fluid dynamics and related fields (pp. 143–158). New York: North-Holland.

    Google Scholar 

  • White, A. B. (1979). On selection of equidistributing meshes for two-point boundary-value problems. SIAM Journal on Numerical Analysis, 16(3), 472–502.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • White, A. B. (1982). On the numerical solution of initial boundary-value problems in one space dimension. SIAM Journal on Numerical Analysis, 19, 683–697.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Yanenko, N. N., Danaev, N. T., & Liseikin, V. D. (1977). A variational method for grid generation. Chisl. Metody Mekhan. Sploshnoi Sredy, 8(4), 157–163 (Russian).

    Google Scholar 

  • Zamaraev, K. K., Khairutdinov, P. F., & Zhdanov, V. P. (1985). Electron tunneling in chemistry. Chemical reactions at large distances. Novosibirsk (Russian): Nauka.

    Google Scholar 

  • Zegeling, P. A. (1993). Moving-grid methods for time-dependent partial differential equations. CWI Tract 94, Amsterdam: Centrum voor Wiskund en Informatica.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir D. Liseikin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liseikin, V.D. (2017). Stretching Method. In: Grid Generation Methods. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-57846-0_4

Download citation

Publish with us

Policies and ethics