Advertisement

Enriching a Situation Awareness Framework for IoT with Knowledge Base and Reasoning Components

  • Niklas Kolbe
  • Arkady Zaslavsky
  • Sylvain Kubler
  • Jérémy Robert
  • Yves Le Traon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10257)

Abstract

The importance of system-level context- and situation awareness increases with the growth of the Internet of Things (IoT). This paper proposes an integrated approach to situation awareness by providing a semantically rich situation model together with reliable situation inference based on Context Spaces Theory (CST) and Situation Theory (ST). The paper discusses benefits of integrating the proposed situation awareness framework with knowledge base and efficient reasoning techniques taking into account uncertainty and incomplete knowledge about situations. The paper discusses advantages and impact of proposed context adaptation in dynamic IoT environments. Practical issues of two-way mapping between IoT messaging standards and CST are also discussed.

Keywords

Context space theory Situation awareness Situation theory Ontology O-MI/O-DF Context adaptation 

Notes

Acknowledgment

Part of this work has been carried out in the scope of the project bIoTope which is co-funded by the European Commission under Horizon-2020 program, contract number H2020-ICT-2015/688203 – bIoTope. The research has been carried out with the financial support of the Ministry of Education and Science of the Russian Federation under grant agreement RFMEFI58716X0031.

References

  1. 1.
    Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). doi: 10.1007/3-540-48157-5_29 CrossRefGoogle Scholar
  2. 2.
    Baumgartner, N., Retschitzegger, W.: A survey of upper ontologies for situation awareness. In: Proceedings of the 4th IASTED International Conference on Knowledge Sharing and Collaborative Engineering, St. Thomas, US VI, pp. 1–9 (2006)Google Scholar
  3. 3.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010)CrossRefGoogle Scholar
  4. 4.
    Boytsov, A., Zaslavsky, A.: ECSTRA–distributed context reasoning framework for pervasive computing systems. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN/ruSMART -2011. LNCS, vol. 6869, pp. 1–13. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22875-9_1 CrossRefGoogle Scholar
  5. 5.
    Boytsov, A., Zaslavsky, A., Eryilmaz, E., Albayrak, S.: Situation awareness meets ontologies: a context spaces case study. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 3–17. Springer, Cham (2015). doi: 10.1007/978-3-319-25591-0_1 CrossRefGoogle Scholar
  6. 6.
    Boytsov, A., Zaslavsky, A., Synnes, K.: Extending context spaces theory by predicting run-time context. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2009. LNCS, vol. 5764, pp. 8–21. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04190-7_2 CrossRefGoogle Scholar
  7. 7.
    Chen, H., Finin, T., Joshi, A.: The SOUPA ontology for pervasive computing. In: Tamma, V., Cranefield, S., Finin, T.W., Willmott, S. (eds.) Ontologies for Agents: Theory and Experiences, pp. 233–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant.: Sci. Serv. Agents World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  9. 9.
    Desai, P., Sheth, A., Anantharam, P.: Semantic gateway as a service architecture for IoT interoperability. In: 2015 IEEE International Conference on Mobile Services, pp. 313–319. IEEE (2015)Google Scholar
  10. 10.
    Devlin, K.: Situation theory and situation semantics. Handb. Hist. Log. 7, 601–664 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Furno, D., Loia, V., Veniero, M.: A fuzzy cognitive situation awareness for airport security. Control Cybern. 39(4), 959–982 (2010)zbMATHGoogle Scholar
  12. 12.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum Comput Stud. 43(5), 907–928 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kokar, M.M., Matheus, C.J., Baclawski, K.: Ontology-based situation awareness. Inf. Fusion 10(1), 83–98 (2009)CrossRefGoogle Scholar
  14. 14.
    Kolbe, N., Zaslavsky, A., Kubler, S., Robert, J.: Reasoning over knowledge-based generation of situations in context spaces to reduce food waste. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 101–114. Springer, Cham (2016). doi: 10.1007/978-3-319-46301-8_9 CrossRefGoogle Scholar
  15. 15.
    Matheus, C.J., Kokar, M.M., Baclawski, K., Letkowski, J.A., Call, C., Hinman, M.L., Salerno, J.J., Boulware, D.M.: SAWA: an assistant for higher-level fusion and situation awareness. In: Defense and Security, pp. 75–85. International Society for Optics and Photonics (2005)Google Scholar
  16. 16.
    Padovitz, A.: Context Management and Reasoning About Situations in Pervasive Computing. Monash University, Melbourne (2006)Google Scholar
  17. 17.
    Padovitz, A., Loke, S.W., Zaslavsky, A.: Towards a theory of context spaces. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 38–42. IEEE (2004)Google Scholar
  18. 18.
    Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  19. 19.
    Spalazzi, L., Taccari, G., Bernardini, A.: An internet of things ontology for earthquake emergency evaluation and response. In: 2014 International Conference on Collaboration Technologies and Systems (CTS), pp. 528–534. IEEE (2014)Google Scholar
  20. 20.
    Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 (2004)Google Scholar
  21. 21.
    Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using owl. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 18–22. IEEE (2004)Google Scholar
  22. 22.
    Yau, S.S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive computing. In: The Fourth IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, 2006 and the 2006 Second International Workshop on Collaborative Computing, Integration, and Assurance, SEUS 2006/WCCIA 2006, p. 6. IEEE (2006)Google Scholar
  23. 23.
    Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Niklas Kolbe
    • 1
  • Arkady Zaslavsky
    • 2
    • 3
  • Sylvain Kubler
    • 1
  • Jérémy Robert
    • 1
  • Yves Le Traon
    • 1
  1. 1.Interdisciplinary Center for Security, Reliability and TrustUniversity of LuxembourgLuxembourgLuxembourg
  2. 2.Commonwealth Scientific and Industrial Research Organisation, Data61ClaytonAustralia
  3. 3.Saint Petersburg National Research University of ITMOSt. PetersburgRussia

Personalised recommendations