Skip to main content

The ContextAct@A4H Real-Life Dataset of Daily-Living Activities

Activity Recognition Using Model Checking

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10257)

Abstract

Research on context management and activity recognition in smart environments is essential in the development of innovative well adapted services. This paper presents two main contributions. First, we present ContextAct@A4H, a new real-life dataset of daily living activities with rich context data (This research is supported by the Amiqual4Home Innovation Factory, http://amiqual4home.inria.fr funded by the ANR (ANR-11-EQPX-0002)). It is a high quality dataset collected in a smart apartment with a dense but non intrusive sensor infrastructure. Second, we present the experience of using temporal logic and model checking for activity recognition. Temporal logic allows specifying activities as complex events of object usage which can be described at different granularity. It also expresses temporal ordering between events thus palliating a limitation of ontology based activity recognition. The results on using the CADP toolbox for activity recognition in the real life collected data are very good.

Keywords

  • Smart home
  • Context
  • Activity recognition
  • Temporal logic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-57837-8_14
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-57837-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    http://www.openhab.org/.

  2. 2.

    https://openweathermap.org/.

References

  1. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS: a smart home in a box. IEEE Comput. 46(7), 62–69 (2013)

    CrossRef  Google Scholar 

  2. Alemdar, H., Ertan, H., Incelt, O.D., Ersoy, C.: ARAS human activity datasets in multiple homes with multiple residents, pp. 232–235 (2013)

    Google Scholar 

  3. Brush, A., Krumm, J., Scott, J.: Activity recognition research: the good, the bad, and the future. In: Pervasive 2010 Workshop: How to Do Good Research in Activity Recognition, pp. 1–3 (2010)

    Google Scholar 

  4. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z., Member, S.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)

    CrossRef  Google Scholar 

  5. Christel Baier, J.P.K.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  6. Garavel, H.: OPEN/CÆSAR: an open software architecture for verification, simulation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84. Springer, Heidelberg (1998). doi:10.1007/BFb0054165

    CrossRef  Google Scholar 

  7. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Springer Int. J. Softw. Tools Technol. Transf. (STTT) 15(2), 89–107 (2013)

    CrossRef  MATH  Google Scholar 

  8. Garavel, H., Mateescu, R.: SEQ.OPEN: a tool for efficient trace-based verification. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 151–157. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24732-6_11

    CrossRef  Google Scholar 

  9. Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    CrossRef  Google Scholar 

  10. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator tech smart house: a programmable pervasive space. Computer 38(3), 50–60 (2005)

    CrossRef  Google Scholar 

  11. Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27, 333–354 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data. Pervasive Mob. Comput. 10, 138–154 (2014)

    CrossRef  Google Scholar 

  13. Lago, P., Jiménez-Guarín, C., Roncancio, C.: Contextualized behavior patterns for change reasoning in ambient assisted living: a formal model. Expert Systems (to appear)

    Google Scholar 

  14. Lago, P., Jiménez-Guarín, C., Roncancio, C.: A case study on the analysis of behavior patterns and pattern changes in smart environments. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 296–303. Springer, Cham (2014). doi:10.1007/978-3-319-13105-4_43

    Google Scholar 

  15. Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.: A long-term evaluation of sensing modalities for activity recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74853-3_28

    CrossRef  Google Scholar 

  16. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68237-0_12

    CrossRef  Google Scholar 

  17. Pnueli, A.: The temporal logic of programs. In: Proceedings of Foundations of Computer Science, pp. 46–57. IEEE (1977)

    Google Scholar 

  18. Rashidi, P.: Stream sequence mining for human activity discovery. In: Plan, Activity, and Intent Recognition, pp. 123–148. Elsevier (2014)

    Google Scholar 

  19. Riboni, D., Pareschi, L., Radaelli, L., Bettini, C.: Is ontology-based activity recognition really effective? In: 2011 PERCOM Workshops, pp. 427–431, March 2011

    Google Scholar 

  20. Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4), 43:1–43:33 (2014)

    CrossRef  Google Scholar 

  21. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24646-6_10

    CrossRef  Google Scholar 

  22. Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Transferring knowledge of activity recognition across sensor networks. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 283–300. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12654-3_17

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lago, P., Lang, F., Roncancio, C., Jiménez-Guarín, C., Mateescu, R., Bonnefond, N. (2017). The ContextAct@A4H Real-Life Dataset of Daily-Living Activities. In: Brézillon, P., Turner, R., Penco, C. (eds) Modeling and Using Context. CONTEXT 2017. Lecture Notes in Computer Science(), vol 10257. Springer, Cham. https://doi.org/10.1007/978-3-319-57837-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57837-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57836-1

  • Online ISBN: 978-3-319-57837-8

  • eBook Packages: Computer ScienceComputer Science (R0)