Abstract
Research on context management and activity recognition in smart environments is essential in the development of innovative well adapted services. This paper presents two main contributions. First, we present ContextAct@A4H, a new real-life dataset of daily living activities with rich context data (This research is supported by the Amiqual4Home Innovation Factory, http://amiqual4home.inria.fr funded by the ANR (ANR-11-EQPX-0002)). It is a high quality dataset collected in a smart apartment with a dense but non intrusive sensor infrastructure. Second, we present the experience of using temporal logic and model checking for activity recognition. Temporal logic allows specifying activities as complex events of object usage which can be described at different granularity. It also expresses temporal ordering between events thus palliating a limitation of ontology based activity recognition. The results on using the CADP toolbox for activity recognition in the real life collected data are very good.
Keywords
- Smart home
- Context
- Activity recognition
- Temporal logic
This is a preview of subscription content, access via your institution.
Buying options




Notes
References
Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS: a smart home in a box. IEEE Comput. 46(7), 62–69 (2013)
Alemdar, H., Ertan, H., Incelt, O.D., Ersoy, C.: ARAS human activity datasets in multiple homes with multiple residents, pp. 232–235 (2013)
Brush, A., Krumm, J., Scott, J.: Activity recognition research: the good, the bad, and the future. In: Pervasive 2010 Workshop: How to Do Good Research in Activity Recognition, pp. 1–3 (2010)
Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z., Member, S.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)
Christel Baier, J.P.K.: Principles of Model Checking. MIT Press, Cambridge (2008)
Garavel, H.: OPEN/CÆSAR: an open software architecture for verification, simulation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84. Springer, Heidelberg (1998). doi:10.1007/BFb0054165
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Springer Int. J. Softw. Tools Technol. Transf. (STTT) 15(2), 89–107 (2013)
Garavel, H., Mateescu, R.: SEQ.OPEN: a tool for efficient trace-based verification. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 151–157. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24732-6_11
Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator tech smart house: a programmable pervasive space. Computer 38(3), 50–60 (2005)
Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27, 333–354 (1983)
Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data. Pervasive Mob. Comput. 10, 138–154 (2014)
Lago, P., Jiménez-Guarín, C., Roncancio, C.: Contextualized behavior patterns for change reasoning in ambient assisted living: a formal model. Expert Systems (to appear)
Lago, P., Jiménez-Guarín, C., Roncancio, C.: A case study on the analysis of behavior patterns and pattern changes in smart environments. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 296–303. Springer, Cham (2014). doi:10.1007/978-3-319-13105-4_43
Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.: A long-term evaluation of sensing modalities for activity recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74853-3_28
Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68237-0_12
Pnueli, A.: The temporal logic of programs. In: Proceedings of Foundations of Computer Science, pp. 46–57. IEEE (1977)
Rashidi, P.: Stream sequence mining for human activity discovery. In: Plan, Activity, and Intent Recognition, pp. 123–148. Elsevier (2014)
Riboni, D., Pareschi, L., Radaelli, L., Bettini, C.: Is ontology-based activity recognition really effective? In: 2011 PERCOM Workshops, pp. 427–431, March 2011
Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4), 43:1–43:33 (2014)
Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24646-6_10
Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Transferring knowledge of activity recognition across sensor networks. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 283–300. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12654-3_17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lago, P., Lang, F., Roncancio, C., Jiménez-Guarín, C., Mateescu, R., Bonnefond, N. (2017). The ContextAct@A4H Real-Life Dataset of Daily-Living Activities. In: Brézillon, P., Turner, R., Penco, C. (eds) Modeling and Using Context. CONTEXT 2017. Lecture Notes in Computer Science(), vol 10257. Springer, Cham. https://doi.org/10.1007/978-3-319-57837-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-57837-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57836-1
Online ISBN: 978-3-319-57837-8
eBook Packages: Computer ScienceComputer Science (R0)