Advertisement

Industrial Selenium Pollution: Sources and Biological Treatment Technologies

Chapter

Abstract

Selenium (Se) discharge into the environment is becoming a matter of increasing concern because it induces toxic effects to biota at low concentrations (several micrograms per liter). Industrial activities that include energy generation, metal and oil refining, mining, and agriculture irrigation generate effluents contaminated with selenium. Biological treatment of these effluents is gaining in popularity in recent years. Microbial reduction of selenium oxyanions to particulate elemental Se0 can be achieved in a number of bioreactor systems that are emerging as a viable bioremediation option because of their favorable cost, footprint, and treatment efficiency. Traditionally, granular sludge bioreactors (e.g., upflow anaerobic sludge blanket, UASB) have been tested for the treatment of selenium-laden wastewaters. Fluidized-bed bioreactors (FBBR) and packed-bed bioreactor systems were later adapted for Se treatment. The hydrogen-based hollow-fiber membrane biofilm reactor (MBfR) is a technology that delivers H2 gas as the electron donor by diffusion to the biofilm formed on non-porous hollow-fiber membranes. A hybrid electro-biochemical reactor (EBR) which uses electrons that are delivered from an external power source through electrodes to selenium-reducing bacteria growing on electrodes has been developed. Constructed wetlands may be useful when the wastewater is produced in large volumes, but they are sensitive to temperature fluctuations and seasonal variation of the vegetation, and they have a large footprint. If Se0 colloids are not captured efficiently within the bioreactor, a challenge is removing colloidal Se0 from the effluent. When properly recovered, Se0 can be a valuable product due to its photo-optical, semiconductive, and adsorptive properties.

Keywords

Selenium Wastewater Biotreatment Bioremediation Toxicity 

List of abbreviations

ABMet®

Advanced biological metals removal

BOD

Biochemical oxygen demand

COD

Chemical oxygen demand

DIET

Direct interspecies electron transfer

DO

Dissolved oxygen

EBCT

Empty bed contact time

EBR

Electro-biochemical reactor

FGD

Flue gas desulfurization

FBBR

Fluidized-bed biofilm reactor

GAC

Granular activated carbon

HRT

Hydraulic residence time

MBfR

Membrane biofilm reactor

NAMC

North American Metal Council

ORP

Oxido-reduction potential

Se

Selenium

Se0

Elemental (zero-valent) selenium

SeOx

Selenium oxyanions (selenite and selenate)

TDS

Total dissolved solids

TOC

Total organic carbon

TSS

Total suspended solids

UASB

Upflow anaerobic sludge blanket

USEPA

United States Environmental Protection Agency

WHO

World Health Organization

Notes

Acknowledgements

The authors would like to thank the European Commission for providing financial support through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments) under the grant agreement FPA no. 2010-0009. We are grateful to Dr. Joel Citulski and Nelson Fonseca (General Electric Power, Oakville, ON, Canada), Dr. Jack Adams (Inotec, Salt Lake City, UT, USA), Dr. Todd Webster (Envirogen Technologies, Inc., East Windsor, NJ, USA), and Dr. Harry Ohlendorf (CH2 M Hill, Englewood, CO, USA) for their useful comments on the manuscript.

References

  1. Alberta Environment (2013) Evaluation of treatment options to reduce water-borne selenium at coal mines in West-Central Alberta. http://environmentgovabca/info/library/7766.pdf
  2. Astratinei V, van Hullebusch ED, Lens PNL (2006) Bioconversion of selenate in methanogenic anaerobic sludge. J Environ Qual 35:1873–1883CrossRefGoogle Scholar
  3. Buchs B, Evangelou MWH, Winkel LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47:2401–2407CrossRefGoogle Scholar
  4. Canadian Council of Ministers of the Environment (2007) Canadian water quality guidelines for the protection of aquatic life: summary table. In: Canadian environmental quality guidelines: Canadian Council of Ministers of the Environment. Winnipeg, SK, CanadaGoogle Scholar
  5. Cantafio AW, Hagen KD, Lewis GE, Bledsoe TL, Nunan KM, Macy J (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol 62:3298–3303Google Scholar
  6. Cellan R, Cox A, Uhle R, Jenevein D, Miller S, Mudder T (1997) Design and construction of an in situ anaerobic biochemical system for passively treating residual cyanide drainage. 1997 National Meeting of the American Society for Surface Mining and Reclamation Proceedings Austin, TX, USAGoogle Scholar
  7. Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem Eng J 155:1–18CrossRefGoogle Scholar
  8. Chapman PM, Adams WJ, Brooks M, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw P (2010) Ecological assessment of selenium in the aquatic environments. SETAC Press, Pensacola, Florida, USACrossRefGoogle Scholar
  9. Chung J, Nerenberg R, Rittmann BE (2006a) Bio-reduction of selenate a hydrogen-based membrane biofilm reactor. Environ Sci Technol 40:1664–1671CrossRefGoogle Scholar
  10. Chung J, Ryu H, Abbaszadegan M, Rittmann BE (2006b) Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate. Appl Microbiol Biotechnol 72:1330–1339CrossRefGoogle Scholar
  11. Citulski J (General Electric Power), personal communicationGoogle Scholar
  12. Cordoba P, Font O, Izquierdo M, Querol X, Tobias A, Lopez-Anton MA et al (2011) Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. Fuel Process Technol 92:1764–1775CrossRefGoogle Scholar
  13. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Union 330:32–54Google Scholar
  14. Environmental Quality Standard Directive 2008/105/EC. http://eur-lexeuropaeu/LexUriServ/LexUriServdo?uri=OJ:L:2008:348:0084:0097.EN.pdf
  15. Fernandez-Martinez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110CrossRefGoogle Scholar
  16. Gao S, Tanji KK, Peters DW, Lin Z, Terry N (2003) Selenium removal from irrigation drainage water flowing through constructed wetland cells with special attention to accumulation in sediments. Water Air Soil Poll 144:263–284CrossRefGoogle Scholar
  17. Gay M, Srinivasan R, Munirathinam, Sandy TA (2012) Pilot testing of selenium removal in a surface coal mine water containing high nitrate and selenium concentrations. In: Proceedings of the Water Environment Federation, WEFTEC 2012, pp 300–317(18), New Orleans, LA, USAGoogle Scholar
  18. Golder Associates (Golder) (2009) Literature review of treatment technologies to remove selenium from mining influenced water. Golder Associates Inc., Lakewood, USA. http://esrd.alberta.ca/water/programs-and-services/surface-water-quality-program/documents/ReduceWaterBorneSeleniumCoalMines.pdf
  19. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604CrossRefGoogle Scholar
  20. Hageman SPW, van der Wejiden RD, Wejima J, Buisman CJN (2013) Microbiological selenate to selenite conversion for selenium removal. Water Res 47:2118–2128CrossRefGoogle Scholar
  21. Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31CrossRefGoogle Scholar
  22. Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591–597CrossRefGoogle Scholar
  23. Haygarth PM (1994) Global importance and global cycling of selenium. In: Frankenberger Jr WT, Benson S (ed) Selenium in the Environment, New York, USAGoogle Scholar
  24. Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol 57:11–26CrossRefGoogle Scholar
  25. Hoffmann JE (1989) Recovering selenium and tellurium from copper refinery slimes. JOM 41:33–38CrossRefGoogle Scholar
  26. Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Hubner R, Farges F, Lens PNL (2015a) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:850–863CrossRefGoogle Scholar
  27. Jain R, Jordan N, Weiss S, Foerstendorf H, Heim K, Kacker R, Hubner R, Kramer H, van Hullebusch ED, Farges F, Lens PNL (2015b) Extracellular polymeric substances (EPS) govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol 49:1713–1720CrossRefGoogle Scholar
  28. Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hubner R, Lens PNL (2016) Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environ Chem Lett 14:381–386CrossRefGoogle Scholar
  29. Johnson PI, Gersberg RM, Rigby M, Roy S (2009) The fate of selenium in the Imperial and Brawley constructed wetlands in the Imperial Valley (California). Ecol Eng 35:908–913CrossRefGoogle Scholar
  30. Kabata-Pendias A (2000) Trace elements in soil and plants, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  31. Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  32. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740Google Scholar
  33. Knotek-Smith HM, Crawford DL, Moller G, Henson RA (2006) Microbial studies of a selenium-contaminated mine site and potential for on-site remediation. J Ind Microbiol Biotechnol 33:897–913CrossRefGoogle Scholar
  34. Kunli L, Lirong X, Jianan T, Douhu W, Lianhua X (2004) Selenium source in the selenosis area of the Daba region, South Qinling Mountain, China. Environ Geol 45:426–432CrossRefGoogle Scholar
  35. Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M (2011) Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 112:259–264CrossRefGoogle Scholar
  36. Kyle JH, Breuer PL, Bunney KG, Pleysier R, May PM (2011) Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part 1: mineralogy, aqueous solution chemistry and toxicity. Hydrometallurgy 107:91–100CrossRefGoogle Scholar
  37. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777CrossRefGoogle Scholar
  38. Lai CY, Yang X, Tang Y, Rittmann BE, Zhao HP (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48:3395–3402CrossRefGoogle Scholar
  39. Lemly AD (1996) Ecosystem recovery following selenium contamination in a freshwater reservoir. Ecotox Environ Safe 36:275–281CrossRefGoogle Scholar
  40. Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49CrossRefGoogle Scholar
  41. Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59(1):44–56Google Scholar
  42. Lenz M, Lens PNL (2009) The essential toxin: The changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633CrossRefGoogle Scholar
  43. Lenz M, Kolvenbach B, Gygax B, Moes S, Corvinni PFX (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microb 77:4676–4680CrossRefGoogle Scholar
  44. Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 89:251–256CrossRefGoogle Scholar
  45. Luek A, Brock C, Rown DJ, Rasmussen JB (2014) A simplified anaerobic bioreactor for the treatment of selenium-laden discharges from non-acidic, end-pit lakes. Mine Water Environ 33:295–306CrossRefGoogle Scholar
  46. Luoma SN, Presser TS (2009) Emerging opportunities in management of selenium contamination. Environ Sci Technol 43:8483–8487CrossRefGoogle Scholar
  47. Luoma SN, Johns C, Fisher NS, Steinberg NA, Oremland RS, Reinfelder JR (1992) Determination of selenium bioavailability to a bivalve from particulate and solute pathways. Environ Sci Technol 26:485–491CrossRefGoogle Scholar
  48. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI (1993a) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43:135–142CrossRefGoogle Scholar
  49. Macy JM, Lawson S, Demoll-Decker H (1993b) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl Microbiol Biotechnol 40:588–594CrossRefGoogle Scholar
  50. Martin K, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94CrossRefGoogle Scholar
  51. McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V (2004) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Bio/Technol 2:225–245CrossRefGoogle Scholar
  52. MSE Technology Applications Inc (MSE) (2001) Final report—Selenium treatment/removal alternatives demonstration project Mine Waste Technology Program Activity III Project 20 Report prepared for US Environmental Protection Agency National Energy Technology Laboratory Office of Research and Development Cincinnati OH and US Department of Energy Federal Energy Technology Center, Pittsburgh, PA, USA. http://nepisepagov/Adobe/PDF/P1008GVL.pdf
  53. Myers T (2013) Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA. Hydrogeol J 21:655–671CrossRefGoogle Scholar
  54. Nagpal NK, Howell K (2001) Water quality guidelines for selenium. Water protection branch Water Lands and Air Protection Ministry of the Environment Environmental Protection Division, Ministry of Environment, CanadaGoogle Scholar
  55. Nancharaiah YV, Lens PNL (2015a) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80CrossRefGoogle Scholar
  56. Nancharaiah YV, Lens PNL (2015b) Selenium biomineralization for biotechnological applications. Trends Biotechnol 6:323–330CrossRefGoogle Scholar
  57. Nelson BN, Cellan R, Mudder J, Whitlock J, Waterland R (2003) In situ anaerobic biological immobilization of uranium, molybdenum and selenium in an alluvial aquifer. Mining Eng 55:31–36Google Scholar
  58. Nerenberg R, Rittmann BE (2004) Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci Technol 49:223–230Google Scholar
  59. Ni TW, Staicu LC, Nemeth R, Schwartz C, Crawford D, Seligman J, Hunter WJ, Pilon-Smits EAH, Ackerson CJ (2015) Progress toward clonable inorganic nanoparticles. Nanoscale 7:17320–17327Google Scholar
  60. Nishimura T, Hashimoto H, Nakayama M (2007) Removal of selenium (VI) from aqueous solution with polyamine-type weakly basic ion exchange resin. Sep Sci Technol 42:3155–3167CrossRefGoogle Scholar
  61. North American Metal Council (NAMC) (2010) Review of available technologies for removal of selenium from water. http://www.namc.org/docs/00062756.pdf
  62. Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. In: Selenium in agriculture and the environment. Jacobs LW (ed) American Society of Agronomy, Inc., Soil Science Society of America, Inc., 5585, Madison, USAGoogle Scholar
  63. Opara A, Peoples MJ, Adams JD, Martin AS (2014a) Electro-biochemical reactor (EBR) technology for selenium removal from British Columbia’s coal-mining wastewaters. http://www.inotec.us/uploads/5/1/2/8/5128573/selenium_removal_coal_mine_water_inotec-sme2014.pdf
  64. Opara A, Peoples MJ, Adams DJ, Maehl WC (2014b) The Landusky mine biotreatment system: comparison of conventional bioreactor performance with a new Electro-Biochemical Reactor (EBR) technology. SME International Meetings, Salt Lake City, UT, USAGoogle Scholar
  65. Oremland RS (1993) Biogeochemical transformations of selenium in anoxic environments. In: Frankenberger WT Jr, Dekker M (eds) Selenium in the environment. CRC Press, New York, USAGoogle Scholar
  66. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by se-respiring bacteria. Appl Environ Microbiol 70:52–60CrossRefGoogle Scholar
  67. Pickett T, Sonstegard J, Bonkoski B (2008) Using biology to treat selenium. Power Eng 110:140–145Google Scholar
  68. Pilon-Smits EAH, Valdez Barillas JR, Van Hoewyk D, Lin ZQ (2010) Phytoremediation of selenium. In: Plaza G (ed) Trends in bioremediation and phytoremediation. Research Signpost, Kerala, IndiaGoogle Scholar
  69. Plant JA, Bone J, Vouvoulis N, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck B (2014) Treatise on geochemistry. In: Holland HD, Turekian KK (eds) Arsenic and selenium, vol 11. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  70. Presser TS (1994) The Kesterson effect. Environ Manage 18:437–454CrossRefGoogle Scholar
  71. Presser TS, Luoma SN (2006) Forecasting selenium discharges to the San Francisco Bay-Delta Estuary: ecological effects of a proposed San Luis Drain extension. US Geological Survey Professional Paper 1646. http://pubs.usgs.gov/pp/p1646
  72. Rittmann BE (2007) The membrane biofilm reactor is a versatile platform for water and wastewater treatment. Environ Engr Res 12:157–175CrossRefGoogle Scholar
  73. Schlekat CE, Dowdle PR, Lee BG, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated selenium on the bivalve Potamocorbila amuresis. Environ Sci Technol 34:4504–4510CrossRefGoogle Scholar
  74. Schröder I, Rech S, Krafft T, Macy JM (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768CrossRefGoogle Scholar
  75. Séby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25°C. Chem Geol 171:173–194CrossRefGoogle Scholar
  76. Shin HC, Ju DH, Jeon BS, Choi O, Kim HW, Um Y, Lee DH, Sang BI, Moissl-Eichinger C (2015) Analysis of the microbial community in an acidic Hollow-fiber Membrane Biofilm Reactor (Hf-MBfR) used for the biological conversion of carbon dioxide to methane. PLOS One 10(12):e0144999Google Scholar
  77. Shrestha PM, Rotaru A-E (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5:237Google Scholar
  78. Simmons DB, Wallschlaeger D (2005) A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ Toxicol Chem 24:1331–1343CrossRefGoogle Scholar
  79. Soda S, Kashiwa M, Kagami T, Muroda M, Yamashita M, Ike M (2011) Laboratory-scale bioreactors for soluble selenium removal from selenium refinery wastewater using anaerobic sludge. Desalination 297:433–438CrossRefGoogle Scholar
  80. Stadtman TC (1974) Selenium biochemistry. Science 183:915–922CrossRefGoogle Scholar
  81. Staicu LC, van Hullebusch ED, Lens PNL, Pilon-Smits EAH, Oturan MA (2015a) Electrocoagulation of colloidal biogenic selenium. Environ Sci Pollut Res Int 22:3127–3137CrossRefGoogle Scholar
  82. Staicu LC, van Hullebusch ED, Oturan MA, Ackerson CJ, Lens PNL (2015b) Removal of colloidal biogenic selenium from wastewater. Chemosphere 125:130–138CrossRefGoogle Scholar
  83. Staicu LC, van Hullebusch ED, Lens PNL (2015c) Production, recovery and reuse of biogenic elemental selenium. Environ Chem Lett 13:89–96CrossRefGoogle Scholar
  84. Staicu LC, Ackerson CJ, Cornelis P et al (2015d) Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. J Appl Microbiol 119:400–410CrossRefGoogle Scholar
  85. Staicu LC, Morin-Crini N, Crini G (2017) Desulfurization: critical step towards enhanced selenium removal from industrial effluents. Chemosphere 117:111–119CrossRefGoogle Scholar
  86. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627CrossRefGoogle Scholar
  87. Stolz JF, Basu P, Oremland RS (2003) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207Google Scholar
  88. Sura-de Jong M, Reynolds J, Richterova K et al (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium tolerance and growth promoting properties. Front Plant Sci 6:113CrossRefGoogle Scholar
  89. United States Environmental Protection Agency (USEPA) (2013) Basic information about Selenium in drinking water. http://waterepagov/drink/contaminants/basicinformation/selenium.cfm
  90. United States Environmental Protection Agency (USEPA) (2015) Effluent limitations guidelines and standards for the steam electric power generating point source category (November 3, 2015). https://www.epa.gov/eg/steam-electric-power-generating-effluent-guidelines-2015-final-rule
  91. Van Ginkel SW, Yang Z, Kim BO, Sholin M, Rittmann BE (2011a) Effect of pH on nitrate and selenate reduction in flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR). Water Sci Technol 63:2923–2928Google Scholar
  92. Van Ginkel SW, Yang Z, Kim BO, Sholin M, Rittmann BE (2011b) The removal of selenate to low ppb leves from flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR). Bioresour Technol 102:6360–6364CrossRefGoogle Scholar
  93. Warnock JN, Bratch K, Al-Rubeai M (2005) Packed bed bioreactor. In: Bioreactors for tissue engineering. Springer, The Netherlands, pp 87–113Google Scholar
  94. Wellen CC, Shatilla NJ, Carey SK (2015) Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada. Sci Total Environ 532:791–802CrossRefGoogle Scholar
  95. Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions speciation and fate. Atmos Environ 41:7151–7165CrossRefGoogle Scholar
  96. Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2011) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46:571–579CrossRefGoogle Scholar
  97. World Health Organisation (WHO) (2011) Guidelines for drinking-water quality, 4th edn. http://whqlibdocwhoint/publications/2011/9789241548151_eng.pdf
  98. Webster Todd (Envirogen), personal communicationGoogle Scholar
  99. Yudovich YE, Ketris MP (2005) Selenium in coal: a review. Int J Coal Geol 67:112–126CrossRefGoogle Scholar
  100. Zhang Y, Zahir ZA, Frankenberger WT (2004) Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual 33:559–564CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Applied Chemistry and Materials ScienceUniversity Politehnica of BucharestBucharestRomania
  2. 2.UNESCO-IHE Institute for Water EducationDelftThe Netherlands
  3. 3.Swette Center for Environmental Biotechnology, Biodesign InstituteArizona State UniversityTempeUSA

Personalised recommendations