Skip to main content

New Exponents for Pointwise Singularity Classification

  • Conference paper
  • First Online:
Recent Developments in Fractals and Related Fields (FARF3 2015)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

Abstract

We introduce new tools for pointwise singularity classification: We investigate the properties of the two-variable function which is defined at every point as the p-exponent of a fractional integral of order t; new exponents are derived which are not of regularity type but give a more precise description of the behavior of the function near a singularity. We revisit several classical examples (deterministic and random) of multifractal functions for which the additional information supplied by this classification is derived. Finally, a new example of multifractal function is studied, where these exponents prove pertinent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abry, P., Jaffard, S., Roux, S.G.: In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Praha (2011)

    Google Scholar 

  2. Arneodo, A., Bacry, E., Jaffard, S., Muzy, J.: J. Fourier Anal. Appl. 4, 159 (1998)

    Article  MathSciNet  Google Scholar 

  3. Balanca, P.: Electron. J. Probab. 101, 1 (2014)

    MathSciNet  Google Scholar 

  4. Balanca, P., Herbin, E.: Stoch. Process. Appl. 122, 2346 (2012)

    Article  Google Scholar 

  5. Barral, J., Mandelbrot, B.: In: Lapidus, M.L., van Frankenhuysen, M. (eds.) Proc. Symp. Pures Math., vol. 72, p. 1 (2004)

    Google Scholar 

  6. Calderon, A.P., Zygmund, A.: Stud. Math. 20, 171 (1961)

    Google Scholar 

  7. Jaffard, S.: C.R.A.S., Série 1 315, 19 (1992)

    Google Scholar 

  8. Jaffard, S.: Rev. Mat. Iberoamericana. 12, 441 (1996)

    Article  MathSciNet  Google Scholar 

  9. Jaffard, S.: J. Math. Pures Appl. 79(6), 525 (2000)

    Article  MathSciNet  Google Scholar 

  10. Jaffard, S.: Ann. Appl. Probab. 10(1), 313 (2000)

    Article  MathSciNet  Google Scholar 

  11. Jaffard, S.: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, In: Lapidus, M., van Frankenhuijsen, M. (eds.) Proceedings of the Symposia in Pure Mathematics, vol. 72(2), pp. 91–152. AMS, Providence (2004)

    Google Scholar 

  12. Jaffard, S.: In: Figiel, T., Kamont, A. (eds.) Approximation and Probability, vol. 72, pp. 93–110. Banach Center Pub., Warsaw (2006)

    Google Scholar 

  13. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Am. Math. Soc. 123 (1996)

    Google Scholar 

  14. Jaffard, S., Martin, B.: Multifractal analysis of the Brjuno function (preprint, 2015). https://arxiv.org/abs/1512.08932

    Google Scholar 

  15. Jaffard, S., Melot, C.: Commun. Math. Phys. 258(3), 513 (2005). doi:10.1007/s00220-005-1354-1

    Article  Google Scholar 

  16. Jaffard, S., Abry, P., Roux, S.G.: In: Bergounioux, M. (ed.) Mathematical Image Processing. Springer Proceedings in Mathematics, vol. 5, p. 1. Springer-Verlag Berlin Heidelberg (2011)

    Google Scholar 

  17. Jaffard, S., Abry, P., Melot, C., Leonarduzzi, R., Wendt, H.: In: Bandt, C., et al. (eds.) Fractal Geometry and Stochastics V. Series Progress in Probability, vol. 70, p. 279. Birkhäuser, Boston (2015)

    Google Scholar 

  18. Jaffard, S., Melot, C., Leonarduzzi, R., Wendt, H., Roux, S.G., Torres, M.E., Abry, P.: Phys. A 448, 300 (2016)

    Article  MathSciNet  Google Scholar 

  19. Leonarduzzi, R., Spika, J., Wendt, H., Jaffard, S., Torres, M.E., Abry, P., Doret, M.: In: Proceedings of the Latin American Conference on Biomedical Engineering (CLAIB). Paraná, Entre Ríos, Argentina, October 2014

    Google Scholar 

  20. Leonarduzzi, R., Spilka, J., Frecon, J., Wendt, H., Pustelnik, N., Jaffard, S., Abry, P., Doret, M.: In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1971–1974. IEEE, New York (2015)

    Google Scholar 

  21. Leonarduzzi, R., Wendt, H., Roux, S.G., Torres, M.E., Melot, C., Jaffard, S., Abry, P.: Phys. A 448, 319 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lévy-Véhel, J., Seuret, S.: J. Fourier Anal. Appl. 9(5), 473 (2003)

    Article  MathSciNet  Google Scholar 

  23. Meyer, Y.: Ondelettes et Opérateurs. Hermann, Paris (1990). English translation, Wavelets and Operators. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  24. Marmi, S., Moussa, P., Yoccoz, J.: Commun. Math. Phys. 186(2), 265 (1997)

    Article  Google Scholar 

  25. Muzy, J.F., Bacry, E., Arneodo, A.: Phys. Rev. E 47(2), 875 (1993)

    Article  Google Scholar 

  26. Parisi, G., Frisch, U.: Turbulence and predictability in geophysical fluid dynamics and climate dynamics. In: Ghil, M., Benzi, R., Parisi, G. (eds.) Proceedings of the International School, p. 84. North-Holland, Amsterdam (1985)

    Google Scholar 

  27. Seuret, S., Ubis, A.: Local L 2-regularity of Riemann’s Fourier series. Ann. l’Inst. Fourier (2017, in press). Preprint, arXiv:1405.0810

    Google Scholar 

  28. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78, 284 pp. Birkhäuser, Basel (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Jaffard .

Editor information

Editors and Affiliations

Appendix

Appendix

We will prove the following result.

Theorem 6.5

Let p > 0 and \(0 \leq t \leq \frac{1} {p}\) with \(\frac{1} {p} -\frac{1} {q} = t\) . Suppose fT p α . Then f (−t) belongs to T q α+t .

Proof

By hypothesis f satisfies

$$\displaystyle{ \sum \limits _{\lambda '\subset 3\lambda _{j}(x_{0})}\vert c_{\lambda '}\vert ^{p}2^{-j'} \leq C2^{-j(\alpha p+1)} }$$
(79)

We will use the following inequalities whose proof we leave to the reader.

Lemma 6.6

Let I a set of countable indices and q > 0. We have

$$\displaystyle{ \sum \limits _{l\in \mathbb{Z}}(2^{lq} - 2^{(l-1)q})\sharp (k: \vert a_{ k}\vert \geq 2^{l}) \leq \sum \limits _{ k\in I}\vert a_{k}\vert ^{q} \leq \sum \limits _{ l\in \mathbb{Z}}(2^{(l+1)q} - 2^{lq})\sharp (\{k: \vert a_{ k}\vert \geq 2^{l}\}) }$$
(80)

A fractional integration of order t amounts to a change of wavelet basis and a multiplication of the coefficients c j, k by 2jt. We want to compute

$$\displaystyle{ D_{\lambda }^{(t),q} = \left (\sum \limits _{\lambda ' \subset 3\lambda _{j}(x_{0})}\vert c_{\lambda '}\vert ^{q}2^{-j'tq}2^{-j'}\right )^{1/q} }$$
(81)

and prove that \(D_{\lambda }^{(t),q} \leq C2^{-j(\alpha +t+\frac{1} {q})} = C2^{-j(\alpha + \frac{1} {p})}\)

Following Lemma 6.6, since \(\frac{1} {p} = \frac{1} {q} + t\),

$$\displaystyle{ (D_{\lambda }^{(t),q})^{q} \leq \sum \limits _{ l\in \mathbb{Z}}(2^{(l+1)q} - 2^{lq})\sharp (\{\lambda ' \subset 3\varLambda _{ j}(x_{0}): \vert c_{\lambda '}\vert 2^{-j't}2^{-\frac{j'} {q} } \geq 2^{l}\}) }$$
(82)
$$\displaystyle{ \leq \sum \limits _{l\in \mathbb{Z}}(2^{(l+1)q} - 2^{lq})\sharp (\{\lambda ' \subset 3\varLambda _{ j}(x_{0}): \vert c_{\lambda '}\vert 2^{-\frac{j'} {p} } \geq 2^{l}\}) }$$
(83)

Remark that by (79) we have \(\vert c_{\lambda '}\vert 2^{-\frac{j'} {p} } \leq C2^{-j(\alpha + \frac{1} {p})}.\) Thus if \(2^{l} \leq \vert c_{\lambda '}\vert 2^{-\frac{j'} {p} }\) we have \(2^{l} \leq C2^{-j(\alpha + \frac{1} {p})}\), which yields \(l \leq -j(\alpha +\frac{1} {p}) + J_{0} \leq l_{1}\) with \(J_{0} \in \mathbb{Z}\) a constant independent of j and j′. Following (79) we have

$$\displaystyle{ \sum \limits _{\lambda '\subset 3\lambda _{j}(x_{0})}\vert c_{\lambda '}\vert ^{p}2^{-j'} \leq C2^{-j(\alpha p+1)},\qquad \mbox{ so that} }$$
(84)
$$\displaystyle{ \sum \limits _{l=-\infty }^{\infty }(2^{lp} - 2^{(l-1)p})\sharp (\{\lambda ' \subset 3\varLambda _{ j}(x_{0}): \vert c_{\lambda '}\vert 2^{-\frac{j'} {p} } \geq 2^{l}\}) \leq C2^{-j(\alpha p+1)}. }$$
(85)

Thus for all \(l \in \mathbb{Z}\),

$$\displaystyle\begin{array}{rcl} (1 - 2^{-p})2^{lp}\sharp (\{\lambda ' \subset 3\varLambda _{ j}(x_{0}): \vert c_{\lambda '}\vert 2^{-\frac{j'} {p} } \geq 2^{l}\})& \leq & C2^{-j(\alpha p+1)} {}\\ \sharp (\{\lambda ' \subset 3\varLambda _{j}(x_{0}): \vert c_{\lambda '}\vert 2^{-\frac{j'} {p} } \geq 2^{l}\})& \leq & \frac{C} {1 - 2^{-p}}2^{-lp}2^{-j(\alpha p+1)}. {}\\ \end{array}$$

Since qp > 0, this yields,

$$\displaystyle\begin{array}{rcl} (D_{\lambda }^{(t),q})^{q}& \leq & \sum \limits _{ l=-\infty }^{l_{1} }(2^{(l+1)q} - 2^{lq})\sharp (\{\lambda ' \subset 3\varLambda _{ j}(x_{0}): \vert c_{\lambda '}\vert 2^{-\frac{j'} {p} } \geq 2^{l}\}) {}\\ & \leq & \frac{C(2^{q} - 1)} {1 - 2^{-p}} \sum \limits _{l=-\infty }^{l_{1} }2^{lq-lp}2^{-j(\alpha p+1)} \leq C'2^{-j(\alpha p+1)}2^{-j(q-p)(\alpha + \frac{1} {p})} {}\\ & \leq & C'2^{-j(\alpha p+1+\alpha q-p\alpha -1+\frac{q} {p})} = C'2^{-j(\alpha q+\frac{q} {p})}, {}\\ \end{array}$$

which yields the result.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Abry, P., Jaffard, S., Leonarduzzi, R., Melot, C., Wendt, H. (2017). New Exponents for Pointwise Singularity Classification. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. FARF3 2015. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57805-7_1

Download citation

Publish with us

Policies and ethics