TXT-tool 3.034-2.1: A Debris Flow Regional Fast Hazard Assessment Toolbox

  • Francesco Bregoli
  • Vicente Medina
  • Allen Bateman


The rapid development of GIS techniques permits the regional scale assessment for natural hazards. In this work different declared as GNU/GPL open source codes for debris flow hazard assessment have been developed for risk management and educational porpoises. The toolbox here presented manages the large amount of regional spatially distributed geographic information and includes: shallow landslide susceptibility assessment tools; an in-channel debris flow triggering mechanism evaluation tool; and the stochastic debris flow propagation tool “DebrisDice”. The tools are presented as executables in order to enhance the usability. Input/output are in ASCII grid format.


Debris flow Shallow landslide Physical models GIS Regional hazard assessment 



The study was financially supported by European Community, through the project IMPRINTS (Agreement: FP7-ENV-2008-1-226555) and the projects “DEBRIS FLOW” and “DEBRISTART” (Agreement CGL2009-13039 and CGL2011-23300) of the Spanish Ministry of Education. The authors want to acknowledge the collaboration of Guillame Chevalier and Marcel Hürlimann of the Technical University of Catalonia (Barcelona, Spain) and Maria Nicolina Papa and Fabio Ciervo of the Universitá degli Studi di Salerno (Italy).


  1. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull 24(1):43–69CrossRefGoogle Scholar
  2. Bregoli F, Medina V, Chevalier G, Hürlimann M, Bateman A (2015) Debris-flow susceptibility assessment at regional scale: validation on an alpine environment. Landslides 12(3):437–454CrossRefGoogle Scholar
  3. Bromhead EN (1992) The stability of slopes. Blackie Academic and Professional, LondonGoogle Scholar
  4. Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16(5):427–445CrossRefGoogle Scholar
  5. Chevalier G, Medina V, Hürlimann M, Bateman A (2013) Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees. Nat Hazards 67:213–238CrossRefGoogle Scholar
  6. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271CrossRefGoogle Scholar
  7. Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth-Sci Rev 40:209–227CrossRefGoogle Scholar
  8. Crosta G, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3(1/2):81–93CrossRefGoogle Scholar
  9. Gamma P (1999) dfwalk—Ein Murgang—Simulations programm zur Gefahrenzonierung. Ph.D. thesis, University of BerneGoogle Scholar
  10. Green WH, Ampt G (1911) Studies of soil physics, part 1. The flow of air and water through soils. J Agric Sci 4:1–24CrossRefGoogle Scholar
  11. Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102(3–4):152–163CrossRefGoogle Scholar
  12. Iverson R (1997) The physics of debris flows. Rev Geophys 35:245–296CrossRefGoogle Scholar
  13. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910CrossRefGoogle Scholar
  14. Jenkinson A (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc 81:58–171CrossRefGoogle Scholar
  15. Montgomery D, Dietrich W (1994) A physically-based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171CrossRefGoogle Scholar
  16. O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28(3):323–344CrossRefGoogle Scholar
  17. Olaya V (2008) Sextante, a free platform for geospatial analysis. OSGeo J 6:32–39Google Scholar
  18. Pack R, Tarboton D, Goodwin C (1998) The SINMAP approach to terrain stability mapping. In: 8th congress of the international association of engineering geology, Vancouver, BC, Canada, pp 21–25Google Scholar
  19. Pack RT, Tarboton DG, Goodwin CN, Prasad A (2005) SINMAP 2. A stability index approach to terrain stability hazard mapping. In: Technical description and users guide for version 2.0. Utah State UniversityGoogle Scholar
  20. Rickenmann D (2005) Runout prediction methods. Debris-flow hazards and related phenomena, Springer Praxis Books. Springer, Berlin, pp 305–324CrossRefGoogle Scholar
  21. Rigon R, Ghesla E, Tiso C, Cozzini A (2006) The HORTON machine: a system for DEM analysis. The reference manual. Università di Trento. Dipartimento di Ingegneria Civile e Ambientale, Trento. e-bookGoogle Scholar
  22. Skempton A, DeLory F (1957) Stability of natural slopes in London clay. Proc Int Conf Soil Mech Found Eng 4(2):378–381Google Scholar
  23. Takahashi T (1991) Debris flow. Balkema, RotterdamGoogle Scholar
  24. Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319CrossRefGoogle Scholar
  25. Voellmy A (1955) Über die zerstörungskraft von lawinen. Schweizerische Bauzeitung 73:212–285Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Francesco Bregoli
    • 1
    • 2
    • 3
  • Vicente Medina
    • 2
  • Allen Bateman
    • 2
  1. 1.Catalan Institute for Water Research (ICRA)GeronaSpain
  2. 2.Sediment Transport Research Group (GITS), Department of Hydraulic, Marine, and Environmental EngineeringUniversitat Politècnica de Catalunya—BarcelonaTech (UPC)BarcelonaSpain
  3. 3.Water Science and Engineering DepartmentIHE Delft Institute for Water Education2601 DA DelfThe Netherlands

Personalised recommendations