Skip to main content

TXT-tool 2.386-1.2: Practice Guidelines on Monitoring and Warning Technology for Debris Flows

  • Chapter
  • First Online:
Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools

Abstract

This paper deals with practical guidelines on installing and running equipment for monitoring of debris flows, based on two decades of experiences in selected instrumented debris flow catchments in Europe. Starting with definitions and aims of any debris-flow monitoring system, especially those that are part of an early warning system, the chain of perception, monitoring and warning is presented. For measuring debris-flow signals, the paper focusses on issues regarding the positioning of measuring devices in the triggering, transport, and depositions areas. Different debris-flow data are recorded, communicated and archived, and all that needs a stable energy supply. The paper ends with a short review of installed debris-flow monitoring systems in Europe (with suggested further reading) and a short description of a human-based early warning system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abancó C, Hürlimann M, Fritschi B, Graf Ch, Moya J (2012) Transformation of ground vibration signal for debris-flow monitoring and detection in alarm systems. Sensors (Basel) 12(4):4870–4891

    Article  Google Scholar 

  • Abancó C, Hürlimann M, Moya J (2014) Analysis of the ground vibration produced by debris flows and other torrential processes at the Rebaixader monitoring site (Catalan Pyrenees, Spain). Nat Hazards Earth Syst Sci 14:929–943. doi:10.5194/nhess-14-929-2014

    Article  Google Scholar 

  • Albert D, Orcutt J (1990) Acoustic pulse propagation above grassland and snow: comparison of theoretical and experimental waveforms. J Acoust Soc Am 87(1):93–100

    Article  Google Scholar 

  • Arattano M (1999) On the use of seismic detectors as monitoring and warning systems for debris flows. Nat Hazards Earth Syst Sci 20:197–213

    Google Scholar 

  • Arattano M (2003) Monitoring the presence of the debris-flow front and its velocity through ground vibrations detectors. In: Proceedings of the 3rd international conference on debris-flow hazards mitigation: mechanics, prediction and assessment, vol 2. Millpress, Rotterdam, pp 731–743

    Google Scholar 

  • Arattano M, Marchi L (2000) Video-derived velocity distribution along a debris flow surge. Phys Chem Earth Part B 25:781–784

    Article  Google Scholar 

  • Arattano M, Abancó C, Coviello V, Hürlimann M (2014) On the techniques for processing the ground velocity signal produced by debris flows: the methods of amplitude and impulses compared. Comput Geosci 73:17–27. doi:10.1016/j.cageo.2014.08.005

    Article  Google Scholar 

  • Bel C, Liébault F, Bellot H, Fontaine F, Laigle D, Navratil O (2014) Debris flow monitoring in French Alps. Proc Int Conf Fluvial Hydraulics RIVER FLOW 2014:1589–1595

    Google Scholar 

  • Bel C, Navratil O, Liébault F, Fontaine F, Bellot H, Laigle D (2015) Monitoring debris flow propagation in steep erodible channels. In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal J.-C, Grant GE (eds) Engineering geology for society and territory, vol. 3. Springer International Publishing, pp 103–107

    Google Scholar 

  • Blasone G, Cavalli M, Cazorzi F (2015) Debris-flow monitoring and geomorphic change detection combining laser scanning and fast photogrammetric surveys in the moscardo catchment (Eastern Italian Alps). In: Lollino G, Arattano M, Rinaldi M, Giustolisi O., Marechal J, Grant GE (eds) Engineering geology for society and territory, Springer, Vol. 3, pp 51–54. doi:10.1007/978-3-319-09054-2_10

  • Comiti F, Marchi L, Macconi P, Arattano M, Bertoldi G, Borga M, Brardinoni F, Cavalli M, D’Agostino V, Penna D, Theule J (2014) A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin. Nat Hazards 73:1175–1198. doi:10.1007/s11069-014-1088-5

    Article  Google Scholar 

  • Genevois R, Tecca P, Breti M, Simoni A (2000) Debris-flow in the dolomites: experimental data from a monitoring system. In: Wieczorek GF, Naeser ND (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, Proceedings of the 2nd international conference, Balkema Press, Taipei, Taiwan, Rotterdam, pp 283–291, 16–18 Aug 2000

    Google Scholar 

  • Hu K, Wei F, Li Y (2011) Real-time measurement and preliminary analysis of debris-flow impact forces at Jiangjia Ravine, China. Earth Surf Processes Land 36:1268–1278. doi:10.1002/esp.2155

    Article  Google Scholar 

  • Hübl J (2009) Hochwässer in Wildbacheinzugsgebieten. Wien Mitt Wasser Abwasser Gewässer 216:45–58

    Google Scholar 

  • Hübl J, Moser M (2006) Risk management in Lattenbach: a case study from Austria. In: Lorenzi G, Brebbia C, Emmanouloudis D (eds) Monitoring. Simulation, prevention and remediation of dense and debris flows, WIT Press, Southamption, pp 333–342

    Google Scholar 

  • Hübl J, Mikoš M (2014) Monitoring von Murgängen. Wildbach-und Lawinenverbau 78(173):50–66 (in German with English abstract)

    Google Scholar 

  • Hübl J, Zhang S, Kogelnig A (2008) Infrasound measurements of debris flow. In: De Wrachien D, Brebbia CA, Lenzi MA (eds) WIT transactions on engineering sciences, 2nd international conference on monitoring, simulation, prevention and remediation of dense and debris flows II. vol 60, pp 3–12. doi:10.2495/DEB080011

  • Hürlimann M, Abancó C, Moya J, Raimat C, Luis-Fonseca R (2011) Debris-flow monitoring stations in the Eastern Pyrenees. Description of instrumentation, first experiences and preliminary results. In: Genevois R, Hamilton DL, Prestininzi A (eds) 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment, Casa Editrice Universita` La Sapienza, Roma, pp 553–562

    Google Scholar 

  • Hürlimann M, McArdell WB, Rickli C (2015) Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology 232:20–32. doi:10.1016/j.geomorph.2014.11.030

    Article  Google Scholar 

  • Itakura Y, Koga Y, Takahama J, Nowa Y (1997) Acoustic detection sensor for debris-flow. In: Chen CL (ed) Debris-flow hazards mitigation: mechanics, prediction, and assessment, Proceedings of first international conference, San Francisco, 7–9 August 1997, USA, New York, ASCE, pp 747–756

    Google Scholar 

  • Jingri C (1989) A study on debris flow warning in China. In: The Japan—China symposium on landslides and debris flows; Niigata, Tokyo, Japan; S 177–182

    Google Scholar 

  • Johnson J (2003) Generation and propagation of infrasonic airwaves from volcanic explosions. J Volcanol Geoth Res 121:1–14

    Article  Google Scholar 

  • Kienholz H (1998) Early warning systems related to mountain hazards; manuscript hand-out; In: International conference on early warning systems for natural disaster reduction, Postdam

    Google Scholar 

  • Kogelnig A, Hübl J, Suriñach E, Vilajosana I, McArdell B (2014) Infrasound produced by debris flow: propagation and frequency content evolution. Nat Hazards. 70(3):1713–1733 doi:10.1007/s11069-011-9741-8

  • LaHusen R (1996) Detecting debris flows using ground vibrations. USGS Fact Sheet 236-96, USGS (ed)

    Google Scholar 

  • LaHusen R (2005): Debris flow instrumentation. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena, Springer, Chichester, pp 291–304

    Google Scholar 

  • Marchi L, Arattano M, Deganutti A (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46(1–2):1–17

    Article  Google Scholar 

  • Navratil O, Liébault F, Bellot H, Theule J, Travaglini E, Ravanat X, Ousset F, Laigle D, Segel V, Fiquet M (2012) High-frequency monitoring of debris flows in the French Alps. preliminary results of a starting program, Conference Proceedings Interpraevent

    Google Scholar 

  • Navratil O, Liébault F, Bellot H, Travaglini E, Theule J, Chambon G, Laigle D (2013) High-frequency monitoring of debris-flow propagation along the Réal Torrent, Southern French Prealps. Geomorphology 201:157–171. doi:10.1016/j.geomorph.2013.06.017

    Article  Google Scholar 

  • Okuda S, Suwa H, Okunishi K, Yokoyama K, Ogawa K, Hamana S (1979) Synthetic observation on debris-flow, part 5, observation at valley Kamikamihorisawa of Mt. Yakedade in 1978. Annuals Disaster Prev Res Inst Kyoto Univ 22B–1:157–204

    Google Scholar 

  • Rupprecht W (2013) Signale und Übertragungssysteme—Modelle und Verfahren; Skriptum zur Vorlesung Grundlagen der Informationsübertragung, Fachbereich Elektrotechnik und Informationstechnik, Universität Kaiserslautern (http://nt.eit.uni-kl.de/fileadmin/lehre/guet/skript)

  • Suriñach E, Vilajosana I, Khazaradze G, Biescas B, Furdada G, Vilaplana J (2005) Seismic detection and characterization of landslides and other mass movements. Nat Hazards Earth Syst Sci 5:791–798

    Article  Google Scholar 

  • Suwa H, Yamakoshi T, Sato K (2000) Relationship between debris-flow discharge and ground vibration. In: Wieczorek GF, Naeser ND (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment, Proceedings 2nd international conference, Balkema Press, Taipei, Taiwan, Rotterdam, pp 311–318, 16–18 Aug 2000

    Google Scholar 

  • Theule JI, Liébault F, Loye A, Laigle D, Jaboyedoff M (2012) Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Nat Hazards Earth Syst Sci 12:731–749. doi:10.5194/nhess-12-731-2012

    Article  Google Scholar 

  • Theule JI, Liébault F, Laigle D, Loye A, Jaboyedoff M (2015) Channel scour and fill by debris flows and bedload transport. Geomorphology 243:92–105. doi:10.1016/j.geomorph.2015.05.003

    Article  Google Scholar 

  • Thorne L, Wallace T (1995) Modern Global Seismology. Academic Press, San Diego, USA

    Google Scholar 

  • Zhang S (1993) A comprehensive approach to the observation and prevention of debris flow in China. Nat Hazards 7:1–23

    Article  Google Scholar 

  • Zhang S, Hong Y, Yu B (2004) Detecting infrasound emission of debris flow for warning purposes. International Symposium Interpraevent VII, Riva, Trient, pp 359–364

    Google Scholar 

Download references

Acknowledgements

The overview presented in this paper was prepared within the framework of the European Alpine Space project START_it_up (State-of-the-Art in Risk Management Technology: Implementation and Trial for Usability in Engineering Practice and Policy), financed by the European Commission.

The main content of these practice guidelines was published as a paper in German language as Hübl and Mikoš (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Mikoš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hübl, J., Mikoš, M. (2018). TXT-tool 2.386-1.2: Practice Guidelines on Monitoring and Warning Technology for Debris Flows. In: Sassa, K., et al. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools . Springer, Cham. https://doi.org/10.1007/978-3-319-57774-6_41

Download citation

Publish with us

Policies and ethics