Skip to main content

TXT-tool 2.039-3.2 Ground-Based Remote Sensing Techniques for Landslides Mapping, Monitoring and Early Warning

Abstract

The current availability of advanced remote sensing technologies in the field of landslide analysis allows rapid and easily updatable data acquisitions, improving the traditional capabilities of detection, mapping and monitoring, optimizing field work, and allowing to investigate hazardous and inaccessible areas while granting at the same time the safety of the operators. In the recent years in particular, ground-based remote sensing techniques have undergone a significant increase of usage, thanks to their technological development and quality data improvement, offering advantages with respect to air- or spaceborne remote sensing techniques, in terms of data spatial resolution and accuracy, fast measurement and processing times, and portability and cost-effectiveness of the acquiring instruments. These advantages can be highlighted in the framework of landslide emergency management, when it is often urgently necessary to minimize survey time when operating in dangerous environments and gather all the required information as fast as possible. In this paper, the potential of some ground-based remote sensing techniques and the effectiveness of their synergic use is explored in several case studies, analyzing different slope instability processes at different scales of emergency or post-emergency management. Thanks to them and to the support of existing bibliography, the most common fields of application are suggested for all the considered ground-based sensor technologies and their level of effectiveness is evaluated in relation to the dynamics of landslide types.

Keywords

  • Landslide mapping and monitoring
  • Early warning
  • Terrestrial laser scanning
  • Infrared thermography
  • GB-InSAR

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern pyrenees, Spain). Eng Geol 88:136–148

    CrossRef  Google Scholar 

  • Abellán A, Vilaplana JM, Calvet J, Garcıa-Selles D, Asensio E (2011) Rockfall monitoring by Terrestrial Laser Scanning—case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat Hazards Earth Syst Sci 11:829–841

    CrossRef  Google Scholar 

  • Alexander DE (1993) Natural disasters. Springer Science & Business Media

    Google Scholar 

  • Bardi F, Frodella W, Ciampalini A, Bianchini S, Del Ventisette C, Gigli G, Fanti R, Moretti S, Basile G, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study. Geomorphology 223:45–60

    CrossRef  Google Scholar 

  • Baroň I, Bečkovský D, Míča L (2012) Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 1–13

    Google Scholar 

  • Benedetti G, Bernardi M, Borgatti L, Continelli F, Ghirotti M, Guerra C, Landuzzi A, Lucente CC, Marchi G (2013) San Leo: centuries of coexistence with landslides. In: Margottini C, Canuti P, Sassa K (eds) Landslide Science and Practice. Springer, Heidelberg, Germany 529–537

    Google Scholar 

  • Brunetti MT, Xiao Z, Komatsu G, Peruccacci S, Guzzetti F (2015) Terrestrial and extraterrestrial landslide size statistics. In: European planetary science congress 2015, 27 Sept–2 Oct 2015, Nantes, France. Copernicus. org/EPSC2015, id. EPSC2015-776 (10: 776)

    Google Scholar 

  • Caduff R, Schlunegger F, Kos A, Wiesmann A (2015a) A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf Proc Land 40(2):208–228

    CrossRef  Google Scholar 

  • Caduff R, Wiesmann A, Bühler Y, Pielmeier C (2015b) Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry. Geophys Res Lett 42(3):813–820

    CrossRef  Google Scholar 

  • Calvari S, Intrieri E, Di Traglia F, Bonaccorso A, Casagli N, Cristaldi A (2016) Monitoring crater-wall collapse at open-conduit volcanoes: the case study of the 12 January 2013 event at Stromboli. Bull Volc 78(39):1–16

    Google Scholar 

  • Calvello M, d’Orsi RN, Piciullo L, Paes N, Magalhaes M, Lacerda WA (2015) The Rio de Janeiro early warning system for rainfall-induced landslides: analysis of performance for the years 2010–2013. Int J Disaster Risk Reduction 12:3–15

    CrossRef  Google Scholar 

  • Cardenal J, Mata E, Perez-Garcia JL, Delgado J, Andez M, Gonzalez A, Diaz-de-Teran JR (2008) Close range digital photogrammetry techniques applied to landslide monitoring. Int Arch Photogrammetry, Remote Sens Spat Inf Sci 37

    Google Scholar 

  • Casagli N, Farina P, Guerri L, Tarchi D, Fortuny J, Leva D, Nico G (2003) Preliminary results of SAR monitoring of the Sciara del Fuoco on the Stromboli volcano. In: International workshop “Occurrence and mechanisms of flow-like landslides in natural slopes and earthfills”, Sorrento, Italy, 14–16 May 2003, vol 2, pp 291–295

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In Landslides: investigation and Mitigation, Sp. Rep. 247, Transportation Research Board, National Research Council, Turner AK, Schuster RL (ed) Washington DC: National Academy Press. 36–75

    Google Scholar 

  • Del Ventisette C, Intrieri E, Luzi G, Casagli N, Fanti R, Leva D (2011) Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Nat Hazards Earth Syst Sci 11(9):2483–2495

    CrossRef  Google Scholar 

  • Di Traglia F, Del Ventisette C, Rosi M, Mugnai F, Intrieri E, Moretti S, Casagli N (2013) Ground-based InSAR reveals conduit pressurization pulses at Stromboli volcano. Terra Nova 25(3):192–198

    CrossRef  Google Scholar 

  • Di Traglia F, Intrieri E, Nolesini T, Bardi F, Del Ventisette C, Ferrigno F, Frangioni S, Frodella W, Gigli G, Lotti A, Tacconi Stefanelli C, Tanteri L, Leva D, Casagli N (2014a) The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity. Bull Volc 76(2):1–18

    Google Scholar 

  • Di Traglia F, Nolesini T, Intrieri E, Mugnai F, Leva D, Rosi M, Casagli N (2014b) Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci Rev 139:317–335

    CrossRef  Google Scholar 

  • Dilley M, Chen RS, Deichmann U (2005) Natural disaster hotspots: a global risk analysis. World Bank

    Google Scholar 

  • Fan YB, Yang SW, Xu LK, Li SH, Feng C, Liang BF (2016) Real-time monitoring instrument designed for the deformation and sliding period of colluvial landslides. Bull Eng Geol Environ 1–10

    Google Scholar 

  • Farina P, Leoni L, Babboni F, Coppi F, Mayer L, Ricci P (2011) IBIS-M, an innovative radar for monitoring slopes in open-pit mines. In: Proceedings, slope stability 2011: international symposium on rock slope stability in open pit mining and civil engineering, Vancouver (Canada), 18–21 Sept 2011

    Google Scholar 

  • Fekete A, Tzavella K, Armas I, Binner J, Garschagen M, Giupponi C et al (2015) Critical data source; tool or even infrastructure? Challenges of geographic information systems and remote sensing for disaster risk governance. ISPRS Int J Geo-Inf 4(4):1848–1869

    Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:65–631

    CrossRef  Google Scholar 

  • Forlani G, Pinto L, Roncella R, Pagliari D (2014) Terrestrial photogrammetry without ground control points. Earth Sci Inf 7(2):71–81

    CrossRef  Google Scholar 

  • Franceschi M, Teza G, Preto N, Pesci A, Galgaro A, Girardi S (2009) Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS J Photogramm 64:522–528

    CrossRef  Google Scholar 

  • Frodella W, Morelli S (2013) High-resolution 3D geomechanical characterization for the evaluation of rockslide susceptibility scenarios. Rendiconti Online della Società Geologica Italiana 24:143–145. ISSN 2035-8008

    Google Scholar 

  • Frodella W, Morelli S, Fidolini F, Pazzi V, Fanti R (2014a) Geomorphology of the Rotolon landslide (Veneto Region, Italy). J Maps 10(3):394–401

    CrossRef  Google Scholar 

  • Frodella W, Morelli S, Gigli G, Casagli N (2014b) Contribution of infrared thermography to the slope instability characterization. In: Proceedings of world landslide forum 3, vol 4, 2–6 June 2014, Beijing, China, pp 144–147

    Google Scholar 

  • Frodella W, Fidolini F, Morelli S, Pazzi F (2015) Application of infrared thermography for landslide mapping: the Rotolon DSGDS case study. Rend Online Soc Geol It 35:144–147. Società Geologica Italiana, Roma 2015

    Google Scholar 

  • Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264:80–94

    CrossRef  Google Scholar 

  • Frohlich C, Mettenleiter M (2004) Terrestrial laser scanning: new perspectives in 3D surveying. In: Thies M, Koch B, Spiecker H, Weinacker H (eds) Laser scanners for forest and landscape assessment. Int Arch Photogrammetry, Remote Sens Spatial Inf Sci 36:8/W2

    Google Scholar 

  • Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187–198

    CrossRef  Google Scholar 

  • Gigli G, Mugnai F, Leoni L, Casagli N (2009) Analysis of deformations in historic urban areas using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1759–1761

    CrossRef  Google Scholar 

  • Gigli G, Frodella W, Garfagnoli F, Mugnai F, Morelli S, Menna F, Casagli N (2014a) 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 11(1):131–140

    CrossRef  Google Scholar 

  • Gigli G, Morelli S, Fornera S, Casagli N (2014b) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rockfall susceptibility scenarios. Landslides 11(1):1–14

    CrossRef  Google Scholar 

  • Ghiglia DC, Romero LA (1994) Robust two-dimensional weighted and un-weighted phase unwrapping that uses fast transforms and iterative methods. J Opt Soc Am 11(1):107–117

    CrossRef  Google Scholar 

  • Giordan D, Allasia P, Manconi A, Baldo M, Santangelo M, Cardinali M, Corazza A, Albanese V, Lollino G, Guzzetti F (2013) Morphological and kinematic evolution of a large earthflow: The Montaguto landslide, southern Italy. Geomorphology 187:61–79

    CrossRef  Google Scholar 

  • Gopi S (2007) Advanced surveying: total station, GIS and remote sensing. Pearson Education India

    Google Scholar 

  • Grussenmeyer P, Landes T, Voegtle T, Ringle K (2008) Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. ISPRS Arch Photogramm Remote Sens 37:W5

    Google Scholar 

  • Kasperski J, Delacourt C, Allemand P, Potherat P, Jaud M, Varrel E (2010) Application of a terrestrial laser scanner (TLS) to the study of the Séchilienne landslide (Isère, France). Remote Sens 2:2785–2802

    CrossRef  Google Scholar 

  • Kjekstad O, Highland L (2009) Economic and social impacts of landslides. In: Landslides–disaster risk reduction. Springer, Berlin, pp 573–587

    Google Scholar 

  • Kvamme KL, Ernenwein EG, Markussen CJ (2006) Robotic total station for microtopographic mapping: an example from the Northern Great Plains. Archaeol Prospection 13(2):91–102

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Mugnai F, Fanti R, Casagli N (2012) Design and implementation of a landslide early warning system. Eng Geol 147–148:124–136

    CrossRef  Google Scholar 

  • Intrieri E, Di Traglia F, Del Ventisette C, Gigli G, Mugnai F, Luzi G, Casagli N (2013) Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): integration of GB-InSAR and geomorphological observations. Geomorphology 201:60–69

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Nocentini M, Lombardi L, Mugnai F, Casagli N (2015) Sinkhole monitoring and early warning: an experimental and successful GB-InSAR application. Geomorphology 241:304–314

    CrossRef  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2014) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Maldague X (2001) Theory and practice of infrared technology for non destructive testing. Wiley, New York, 684 p

    Google Scholar 

  • Mantovani F, Soeters R, van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225

    CrossRef  Google Scholar 

  • Morelli S, Segoni S, Manzo G, Ermini L, Catani F (2012) Urban planning, flood risk and public policy: the case of the Arno River, Firenze, Italy. Appl Geogr 34:205–218

    CrossRef  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzer R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019

    CrossRef  Google Scholar 

  • Pesci A, Teza G (2008) Effects of surface irregularities on intensity data from laser scanning an experimental approach. Ann Geophys-Italy 51:839–848

    Google Scholar 

  • Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, Atzeni C (2003) Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int J Remote Sens 24(6):1385–1391

    CrossRef  Google Scholar 

  • Pratesi F, Nolesini T, Bianchini S, Leva D, Lombardi L, Fanti R, Casagli N (2015) Early warning GBInSAR-based method for monitoring Volterra (Tuscany, Italy) city walls. IEEE J Sel Top Appl Earth Obs Remote Sens 8(4):1753–1762

    CrossRef  Google Scholar 

  • Qiao G, Lu P, Scaioni M, Xu S, Tong S, Feng T, Wu H, Chen W, Tian Y, Wang W, Li R (2013) Landslide investigation with remote sensing and sensor network: from susceptibility mapping and scaled-down simulation towards in situ sensor network design. Remote Sens 5:4319–4346

    CrossRef  Google Scholar 

  • RIEGL (2010) Data sheet of long range & high accuracy 3D terrestrial laser scanner LMS- Z420i. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_Z420i_03-05-2010.pdf

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375

    CrossRef  Google Scholar 

  • SafeLand (2012) SafeLand–FP7, Deliverable 4.5, Evaluation report on innovative monitoring and remote sensing methods and future technology, 280 p http://cordis.europa.eu/result/rcn/54948_en.html. Last accessed 10 May 2016

  • Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6(10):9600–9652

    CrossRef  Google Scholar 

  • Scaioni M, Feng T, Lu P, Qiao G, Tong X, Li R, Barazzetti L, Previtali M, Roncella R (2015) Close-range photogrammetric techniques for deformation measurement: applications to landslides. In: Modern technologies for landslide monitoring and prediction. Springer, Berlin, pp 13–41

    Google Scholar 

  • Severin J, Eberhardt E, Leoni L, Fortin S (2014) Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar. Eng Geol 181:202–211

    CrossRef  Google Scholar 

  • Slob S, Hack HRGK, Feng Q, Röshoff K, Turner AK (2007) Fracture mapping using 3D laser scanning techniques. In: Proceedings of the 11th congress of the International Society for Rock Mechanics, Lisbon, Portugal, vol 1, pp 299–302

    Google Scholar 

  • Spampinato L, Calvari S, Oppenheimer C, Boschi E (2011) Volcano surveillance using infrared cameras. Earth Sci Rev 106:63–91

    CrossRef  Google Scholar 

  • Squarzoni C, Galgaro A, Teza G, Acosta CAT, Pernito MA, Bucceri N (2008) Terrestrial laser scanner and infrared thermography in rock fall prone slope analysis. Geophysical research abstracts 10, EGU2008-A-09254, EGU General Assembly 2008

    Google Scholar 

  • Stavroulaki ME, Riveiro B, Drosopoulos GA, Solla M, Koutsianitis P, Stavroulakis GE (2016) Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Adv Eng Softw

    Google Scholar 

  • Tapete D, Casagli N, Luzi G, Fanti R, Gigli G, Leva D (2013) Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J Archaeol Sci 40(1):176–189

    CrossRef  Google Scholar 

  • Tapete D, Morelli S, Fanti R, Casagli N (2015) Localising deformation along the elevation of linear structures: an experiment with space-borne InSAR and RTK GPS on the Roman Aqueducts in Rome, Italy. Appl Geogr 58:65–83

    CrossRef  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Leva D, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 1(68):15–30

    CrossRef  Google Scholar 

  • Teza G, Marcato G, Castelli E, Galgaro A (2012) IRTROCK: a matlab toolbox for contactless recognition of surface and shallow weakness traces of a rock mass by infrared thermography. Comput Geosci 45:109–118

    CrossRef  Google Scholar 

  • Voegtle T, Schwab I, Landes T (2008) Influences of different materials on the measurements of a terrestrial laser scanner (TLS). In: Proceedings of the XXI congress, The International Society for Photogrammetry and Remote Sensing, ISPRS2008, vol 37, pp 1061–1066

    Google Scholar 

  • Wolter A, Stead D, Clague JJ (2014) A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology 206:147–164

    CrossRef  Google Scholar 

  • Wu JH, Lin HM, Lee DH, Fang SC (2005) Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng Geol 80:164–173

    CrossRef  Google Scholar 

  • Zhang Z, Zheng S, Zhan Z (2004) Digital terrestrial photogrammetry with photo total station. In: International archives of photogrammetry and remote sensing, Istanbul, Turkey, pp 232–236

    Google Scholar 

Download references

Acknowledgements

The Santa Trada and San Leo landslides are case studies described in this paper are relative to monitoring campaigns financed and supported by the Italian National Civil Protection Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Casagli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Casagli, N., Morelli, S., Frodella, W., Intrieri, E., Tofani, V. (2018). TXT-tool 2.039-3.2 Ground-Based Remote Sensing Techniques for Landslides Mapping, Monitoring and Early Warning. In: , et al. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools . Springer, Cham. https://doi.org/10.1007/978-3-319-57774-6_18

Download citation