Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern pyrenees, Spain). Eng Geol 88:136–148
CrossRef
Google Scholar
Abellán A, Vilaplana JM, Calvet J, Garcıa-Selles D, Asensio E (2011) Rockfall monitoring by Terrestrial Laser Scanning—case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat Hazards Earth Syst Sci 11:829–841
CrossRef
Google Scholar
Alexander DE (1993) Natural disasters. Springer Science & Business Media
Google Scholar
Bardi F, Frodella W, Ciampalini A, Bianchini S, Del Ventisette C, Gigli G, Fanti R, Moretti S, Basile G, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study. Geomorphology 223:45–60
CrossRef
Google Scholar
Baroň I, Bečkovský D, Míča L (2012) Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 1–13
Google Scholar
Benedetti G, Bernardi M, Borgatti L, Continelli F, Ghirotti M, Guerra C, Landuzzi A, Lucente CC, Marchi G (2013) San Leo: centuries of coexistence with landslides. In: Margottini C, Canuti P, Sassa K (eds) Landslide Science and Practice. Springer, Heidelberg, Germany 529–537
Google Scholar
Brunetti MT, Xiao Z, Komatsu G, Peruccacci S, Guzzetti F (2015) Terrestrial and extraterrestrial landslide size statistics. In: European planetary science congress 2015, 27 Sept–2 Oct 2015, Nantes, France. Copernicus. org/EPSC2015, id. EPSC2015-776 (10: 776)
Google Scholar
Caduff R, Schlunegger F, Kos A, Wiesmann A (2015a) A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf Proc Land 40(2):208–228
CrossRef
Google Scholar
Caduff R, Wiesmann A, Bühler Y, Pielmeier C (2015b) Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry. Geophys Res Lett 42(3):813–820
CrossRef
Google Scholar
Calvari S, Intrieri E, Di Traglia F, Bonaccorso A, Casagli N, Cristaldi A (2016) Monitoring crater-wall collapse at open-conduit volcanoes: the case study of the 12 January 2013 event at Stromboli. Bull Volc 78(39):1–16
Google Scholar
Calvello M, d’Orsi RN, Piciullo L, Paes N, Magalhaes M, Lacerda WA (2015) The Rio de Janeiro early warning system for rainfall-induced landslides: analysis of performance for the years 2010–2013. Int J Disaster Risk Reduction 12:3–15
CrossRef
Google Scholar
Cardenal J, Mata E, Perez-Garcia JL, Delgado J, Andez M, Gonzalez A, Diaz-de-Teran JR (2008) Close range digital photogrammetry techniques applied to landslide monitoring. Int Arch Photogrammetry, Remote Sens Spat Inf Sci 37
Google Scholar
Casagli N, Farina P, Guerri L, Tarchi D, Fortuny J, Leva D, Nico G (2003) Preliminary results of SAR monitoring of the Sciara del Fuoco on the Stromboli volcano. In: International workshop “Occurrence and mechanisms of flow-like landslides in natural slopes and earthfills”, Sorrento, Italy, 14–16 May 2003, vol 2, pp 291–295
Google Scholar
Cruden DM, Varnes DJ (1996) Landslide types and processes. In Landslides: investigation and Mitigation, Sp. Rep. 247, Transportation Research Board, National Research Council, Turner AK, Schuster RL (ed) Washington DC: National Academy Press. 36–75
Google Scholar
Del Ventisette C, Intrieri E, Luzi G, Casagli N, Fanti R, Leva D (2011) Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Nat Hazards Earth Syst Sci 11(9):2483–2495
CrossRef
Google Scholar
Di Traglia F, Del Ventisette C, Rosi M, Mugnai F, Intrieri E, Moretti S, Casagli N (2013) Ground-based InSAR reveals conduit pressurization pulses at Stromboli volcano. Terra Nova 25(3):192–198
CrossRef
Google Scholar
Di Traglia F, Intrieri E, Nolesini T, Bardi F, Del Ventisette C, Ferrigno F, Frangioni S, Frodella W, Gigli G, Lotti A, Tacconi Stefanelli C, Tanteri L, Leva D, Casagli N (2014a) The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity. Bull Volc 76(2):1–18
Google Scholar
Di Traglia F, Nolesini T, Intrieri E, Mugnai F, Leva D, Rosi M, Casagli N (2014b) Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci Rev 139:317–335
CrossRef
Google Scholar
Dilley M, Chen RS, Deichmann U (2005) Natural disaster hotspots: a global risk analysis. World Bank
Google Scholar
Fan YB, Yang SW, Xu LK, Li SH, Feng C, Liang BF (2016) Real-time monitoring instrument designed for the deformation and sliding period of colluvial landslides. Bull Eng Geol Environ 1–10
Google Scholar
Farina P, Leoni L, Babboni F, Coppi F, Mayer L, Ricci P (2011) IBIS-M, an innovative radar for monitoring slopes in open-pit mines. In: Proceedings, slope stability 2011: international symposium on rock slope stability in open pit mining and civil engineering, Vancouver (Canada), 18–21 Sept 2011
Google Scholar
Fekete A, Tzavella K, Armas I, Binner J, Garschagen M, Giupponi C et al (2015) Critical data source; tool or even infrastructure? Challenges of geographic information systems and remote sensing for disaster risk governance. ISPRS Int J Geo-Inf 4(4):1848–1869
Google Scholar
Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:65–631
CrossRef
Google Scholar
Forlani G, Pinto L, Roncella R, Pagliari D (2014) Terrestrial photogrammetry without ground control points. Earth Sci Inf 7(2):71–81
CrossRef
Google Scholar
Franceschi M, Teza G, Preto N, Pesci A, Galgaro A, Girardi S (2009) Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS J Photogramm 64:522–528
CrossRef
Google Scholar
Frodella W, Morelli S (2013) High-resolution 3D geomechanical characterization for the evaluation of rockslide susceptibility scenarios. Rendiconti Online della Società Geologica Italiana 24:143–145. ISSN 2035-8008
Google Scholar
Frodella W, Morelli S, Fidolini F, Pazzi V, Fanti R (2014a) Geomorphology of the Rotolon landslide (Veneto Region, Italy). J Maps 10(3):394–401
CrossRef
Google Scholar
Frodella W, Morelli S, Gigli G, Casagli N (2014b) Contribution of infrared thermography to the slope instability characterization. In: Proceedings of world landslide forum 3, vol 4, 2–6 June 2014, Beijing, China, pp 144–147
Google Scholar
Frodella W, Fidolini F, Morelli S, Pazzi F (2015) Application of infrared thermography for landslide mapping: the Rotolon DSGDS case study. Rend Online Soc Geol It 35:144–147. Società Geologica Italiana, Roma 2015
Google Scholar
Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264:80–94
CrossRef
Google Scholar
Frohlich C, Mettenleiter M (2004) Terrestrial laser scanning: new perspectives in 3D surveying. In: Thies M, Koch B, Spiecker H, Weinacker H (eds) Laser scanners for forest and landscape assessment. Int Arch Photogrammetry, Remote Sens Spatial Inf Sci 36:8/W2
Google Scholar
Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187–198
CrossRef
Google Scholar
Gigli G, Mugnai F, Leoni L, Casagli N (2009) Analysis of deformations in historic urban areas using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1759–1761
CrossRef
Google Scholar
Gigli G, Frodella W, Garfagnoli F, Mugnai F, Morelli S, Menna F, Casagli N (2014a) 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 11(1):131–140
CrossRef
Google Scholar
Gigli G, Morelli S, Fornera S, Casagli N (2014b) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rockfall susceptibility scenarios. Landslides 11(1):1–14
CrossRef
Google Scholar
Ghiglia DC, Romero LA (1994) Robust two-dimensional weighted and un-weighted phase unwrapping that uses fast transforms and iterative methods. J Opt Soc Am 11(1):107–117
CrossRef
Google Scholar
Giordan D, Allasia P, Manconi A, Baldo M, Santangelo M, Cardinali M, Corazza A, Albanese V, Lollino G, Guzzetti F (2013) Morphological and kinematic evolution of a large earthflow: The Montaguto landslide, southern Italy. Geomorphology 187:61–79
CrossRef
Google Scholar
Gopi S (2007) Advanced surveying: total station, GIS and remote sensing. Pearson Education India
Google Scholar
Grussenmeyer P, Landes T, Voegtle T, Ringle K (2008) Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. ISPRS Arch Photogramm Remote Sens 37:W5
Google Scholar
Kasperski J, Delacourt C, Allemand P, Potherat P, Jaud M, Varrel E (2010) Application of a terrestrial laser scanner (TLS) to the study of the Séchilienne landslide (Isère, France). Remote Sens 2:2785–2802
CrossRef
Google Scholar
Kjekstad O, Highland L (2009) Economic and social impacts of landslides. In: Landslides–disaster risk reduction. Springer, Berlin, pp 573–587
Google Scholar
Kvamme KL, Ernenwein EG, Markussen CJ (2006) Robotic total station for microtopographic mapping: an example from the Northern Great Plains. Archaeol Prospection 13(2):91–102
CrossRef
Google Scholar
Intrieri E, Gigli G, Mugnai F, Fanti R, Casagli N (2012) Design and implementation of a landslide early warning system. Eng Geol 147–148:124–136
CrossRef
Google Scholar
Intrieri E, Di Traglia F, Del Ventisette C, Gigli G, Mugnai F, Luzi G, Casagli N (2013) Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): integration of GB-InSAR and geomorphological observations. Geomorphology 201:60–69
CrossRef
Google Scholar
Intrieri E, Gigli G, Nocentini M, Lombardi L, Mugnai F, Casagli N (2015) Sinkhole monitoring and early warning: an experimental and successful GB-InSAR application. Geomorphology 241:304–314
CrossRef
Google Scholar
Lillesand T, Kiefer RW, Chipman J (2014) Remote sensing and image interpretation. Wiley, New York
Google Scholar
Maldague X (2001) Theory and practice of infrared technology for non destructive testing. Wiley, New York, 684 p
Google Scholar
Mantovani F, Soeters R, van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225
CrossRef
Google Scholar
Morelli S, Segoni S, Manzo G, Ermini L, Catani F (2012) Urban planning, flood risk and public policy: the case of the Arno River, Firenze, Italy. Appl Geogr 34:205–218
CrossRef
Google Scholar
Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzer R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019
CrossRef
Google Scholar
Pesci A, Teza G (2008) Effects of surface irregularities on intensity data from laser scanning an experimental approach. Ann Geophys-Italy 51:839–848
Google Scholar
Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, Atzeni C (2003) Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int J Remote Sens 24(6):1385–1391
CrossRef
Google Scholar
Pratesi F, Nolesini T, Bianchini S, Leva D, Lombardi L, Fanti R, Casagli N (2015) Early warning GBInSAR-based method for monitoring Volterra (Tuscany, Italy) city walls. IEEE J Sel Top Appl Earth Obs Remote Sens 8(4):1753–1762
CrossRef
Google Scholar
Qiao G, Lu P, Scaioni M, Xu S, Tong S, Feng T, Wu H, Chen W, Tian Y, Wang W, Li R (2013) Landslide investigation with remote sensing and sensor network: from susceptibility mapping and scaled-down simulation towards in situ sensor network design. Remote Sens 5:4319–4346
CrossRef
Google Scholar
RIEGL (2010) Data sheet of long range & high accuracy 3D terrestrial laser scanner LMS- Z420i. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_Z420i_03-05-2010.pdf
Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375
CrossRef
Google Scholar
SafeLand (2012) SafeLand–FP7, Deliverable 4.5, Evaluation report on innovative monitoring and remote sensing methods and future technology, 280 p http://cordis.europa.eu/result/rcn/54948_en.html. Last accessed 10 May 2016
Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6(10):9600–9652
CrossRef
Google Scholar
Scaioni M, Feng T, Lu P, Qiao G, Tong X, Li R, Barazzetti L, Previtali M, Roncella R (2015) Close-range photogrammetric techniques for deformation measurement: applications to landslides. In: Modern technologies for landslide monitoring and prediction. Springer, Berlin, pp 13–41
Google Scholar
Severin J, Eberhardt E, Leoni L, Fortin S (2014) Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar. Eng Geol 181:202–211
CrossRef
Google Scholar
Slob S, Hack HRGK, Feng Q, Röshoff K, Turner AK (2007) Fracture mapping using 3D laser scanning techniques. In: Proceedings of the 11th congress of the International Society for Rock Mechanics, Lisbon, Portugal, vol 1, pp 299–302
Google Scholar
Spampinato L, Calvari S, Oppenheimer C, Boschi E (2011) Volcano surveillance using infrared cameras. Earth Sci Rev 106:63–91
CrossRef
Google Scholar
Squarzoni C, Galgaro A, Teza G, Acosta CAT, Pernito MA, Bucceri N (2008) Terrestrial laser scanner and infrared thermography in rock fall prone slope analysis. Geophysical research abstracts 10, EGU2008-A-09254, EGU General Assembly 2008
Google Scholar
Stavroulaki ME, Riveiro B, Drosopoulos GA, Solla M, Koutsianitis P, Stavroulakis GE (2016) Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Adv Eng Softw
Google Scholar
Tapete D, Casagli N, Luzi G, Fanti R, Gigli G, Leva D (2013) Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J Archaeol Sci 40(1):176–189
CrossRef
Google Scholar
Tapete D, Morelli S, Fanti R, Casagli N (2015) Localising deformation along the elevation of linear structures: an experiment with space-borne InSAR and RTK GPS on the Roman Aqueducts in Rome, Italy. Appl Geogr 58:65–83
CrossRef
Google Scholar
Tarchi D, Casagli N, Fanti R, Leva D, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 1(68):15–30
CrossRef
Google Scholar
Teza G, Marcato G, Castelli E, Galgaro A (2012) IRTROCK: a matlab toolbox for contactless recognition of surface and shallow weakness traces of a rock mass by infrared thermography. Comput Geosci 45:109–118
CrossRef
Google Scholar
Voegtle T, Schwab I, Landes T (2008) Influences of different materials on the measurements of a terrestrial laser scanner (TLS). In: Proceedings of the XXI congress, The International Society for Photogrammetry and Remote Sensing, ISPRS2008, vol 37, pp 1061–1066
Google Scholar
Wolter A, Stead D, Clague JJ (2014) A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology 206:147–164
CrossRef
Google Scholar
Wu JH, Lin HM, Lee DH, Fang SC (2005) Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng Geol 80:164–173
CrossRef
Google Scholar
Zhang Z, Zheng S, Zhan Z (2004) Digital terrestrial photogrammetry with photo total station. In: International archives of photogrammetry and remote sensing, Istanbul, Turkey, pp 232–236
Google Scholar