Skip to main content

Magnetic Resonance Imaging (MRI)

  • Chapter
  • First Online:
Brain Metastases

Abstract

The phenomenon of nuclear magnetic resonance (NMR) was discovered and studied in the 1950s of the twentieth century. Two groups of British physicists under the leadership of Bloch and Pursell determined physical and chemical factors, such as proton density and the so-called relaxation parameters, times of longitudinal (T1) and transverse (T2) substance relaxation, on which the value of the detected MR signal depended. Hahn (1950) developed an in vitro method for measuring the substance relaxation parameters using a sequence of radio pulses, called a pulse sequence (PS) “spin echo” (SE) (Hahn 1950; Bloch and Pursell 1952).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Akeson P, Larsson E, Kristoffersen D, et al. Brain metastases – comparison of gadodiamide injection-enhanced MR imaging at standard and high dose, contrast-enhanced CT and non-contrast-enhanced MR imaging. Acta Radiol. 1995;36(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  • Alsop D, Detre J, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16.

    Article  PubMed  Google Scholar 

  • Attenberger U, Runge V, Jackson C, et al. Comparative evaluation of lesion enhancement using 1 M gadobutrol vs. 2 conventional gadolinium chelates, all at a dose of 0.1 mmol/kg, in a rat brain tumor model at 3 T. Investig Radiol. 2009;44:251–6.

    Article  CAS  Google Scholar 

  • Baert A, Sartor K. In: Jackson A, Buckley DL, Parker GJM, editors. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Berlin Heidelberg: Springer-Verlag; 2005. p. 313.

    Google Scholar 

  • Basser P, Pierpaoli C. A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med. 1998;39:928–34.

    Article  CAS  PubMed  Google Scholar 

  • Basser P, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209–19.

    Article  CAS  PubMed  Google Scholar 

  • Bisese J. MRI of cranial metastasis. Semin Ultrasound CT MRI. 1992;3:473–83.

    Google Scholar 

  • Bloch F, Hanson H, Packard M. Nuclear induction. Phys Rev. 1946;70:460–74.

    Article  CAS  Google Scholar 

  • Blouw B, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003;4:133–46.

    Article  CAS  PubMed  Google Scholar 

  • Cascino T, Byrne T, Deck M, Posner JB. Intra-arterial BCNU in the treatment of metastatic brain tumors. J Neuro-Oncol. 1983;1(3):211–8.

    Article  CAS  Google Scholar 

  • Cha S, Lupo J, Chen M, et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Am J Neuroradiol. 2007;28:1078–84.

    Article  CAS  PubMed  Google Scholar 

  • Dolgushin MB, Pronin IN, Turkin AM, et al. 3D SWAN in the evaluation of the structure characteristics of glioblastoma brain metastases on a 3 Tl MR tomograph. J Med Imaging. 2012a;1:26–35.

    Google Scholar 

  • Dolgushin MB, Pronin IN, Fadeeva LM, et al. The pulse sequence SWAN (3T) and CT perfusion in a comprehensive assessment of structural features of brain metastases and malignant gliomas. Radial Diagn Ther. 2012b;3:51–7.

    Google Scholar 

  • Dolgushin MB. Abstract of dissertation for the degree of Doctor of Medical Sciences, Moscow. 2012.

    Google Scholar 

  • Edelman R, Zlatkin M, Hesselink J. Clinical magnetic resonance imaging. Philadelphia: Saunders; 1996.

    Google Scholar 

  • Gaddikeri S, Gaddikeri RS, Tailor T, et al. Dynamic contrast-enchanced MR imaging in head and neck cancer: techniques and clinical applications. Am J Neuroradiol. 2016;37(4):588–95.

    Article  CAS  PubMed  Google Scholar 

  • Gasperini C, Paolillo A, Rovaris M, et al. A comparison of the sensitivity of MRI after double- and triple-dose Gd-DTPA for detecting enhancing lesions in multiple sclerosis. Magn Reson Imaging. 2000;18:761–3.

    Article  CAS  PubMed  Google Scholar 

  • Griffith B, Jain R. Perfusion imaging in neuro-oncology basic techniques and clinical applications. J Pathol. 2015;53(3):497–511.

    Google Scholar 

  • Guo A, Cummings T, Dash R, et al. Lymphomas and high grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology. 2002;224:177–83.

    Article  PubMed  Google Scholar 

  • Haacke E, Ayaz M, Khan A, et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging. 2007;26:256–64.

    Article  PubMed  Google Scholar 

  • Haacke E, Cheng N, House M, et al. Imaging iron stores in the brain using magnetic resonance imaging. J Magn Reson Imaging. 2005;23(1):1–25.

    Article  CAS  Google Scholar 

  • Haacke E, Tang J, Neelavalli J, et al. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32:663–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn E. Spin echoes. Phys Rev. 1950;80:580–94.

    Article  Google Scholar 

  • Huisman T, Sorensen A. Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children. Eur Radiol. 2004;14:59–72.

    Article  PubMed  Google Scholar 

  • Järnum H, Steffensen E, Knutsson L. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology. 2010;52(4):307–17.

    Article  PubMed  Google Scholar 

  • Koh D, Collins D. Diffusion Weighted MRI in the body: application in oncology. AJR. 2007;188(6):1622–35.

    Article  PubMed  Google Scholar 

  • Konovalov AN, Kornienko VN, Pronin IN. Magnetic resonance imaging in neurosurgery. Moscow: Vidar; 1997a. p. 471.

    Google Scholar 

  • Konovalov AN, Kornienko VN, Pronin IN. Magnetic resonance imaging in neurosurgery. Moscow: Vidar; 1997b. p. 472.

    Google Scholar 

  • Konovalov AN, Kornienko VN, Pronin IN. Magnetic resonance imaging in neurosurgery. Vidar: Moscow; 1997c.

    Google Scholar 

  • Kornienko VN, Pronin IN. Diagnostic neuroradiology, vol. 1. Moscow: Andreeva TM; 2008a. p. 454.

    Google Scholar 

  • Kornienko VN, Pronin IN, editors. Neuroimaging: selected articles (2000–2007). Moscow: Andreeva TM; 2008b. p. 256.

    Google Scholar 

  • Kornienko VN, Pronin IN, et al. Neuroradiology. Current state and prospects of development. In: Konovalov AN, editor. Modern technologies and clinical research in neurosurgery, vol. 1. Moscow: Alexeeva TM; 2012. p. 113–58.

    Google Scholar 

  • Kornienko VN, Pronin IN, Pyanykh OS, Fadeeva LM. A study of brain tissue perfusion by computed tomography. J Med Imaging. 2007;2:70–81.

    Google Scholar 

  • Kornienko VN, Pronin IN. Contrast enhancement in neuroradiology. Moscow: Alexeeva TM; 2010. p. 256.

    Google Scholar 

  • Kornienko VN, Pronin IN. Diagnostic neuroradiology, vol. 2. Moscow: Andreeva TM; 2009a. p. 462.

    Google Scholar 

  • Kornienko VN, Pronin IN. Diagnostic neuroradiology, vol. 3. Moscow: Andreeva TM; 2009b. p. 463.

    Google Scholar 

  • Kornienko V, Pronin I. Diagnostic neuroradiology. Berlin-Heidelberg: Springer-Verlag; 2009c. p. 1388.

    Google Scholar 

  • Kornienko VN, Pronin IN. Diagnostic neuroradiology, vol. III. Moscow: Andreeva TM; 2009d. p. 182–346.

    Google Scholar 

  • Le Bihan D, Breton E. Imagieri de diffusion in-vivo par resonance magnetique. C R Acad Sci (II). 1985;15:1109–12.

    Google Scholar 

  • Le Bihan D, Turner R, Mooner C, et al. Imaging of diffusion and microvasculation with gradient sensitization: design, strategy and significance. J Magn Reson Imaging. 1991;1:7–28.

    Article  PubMed  Google Scholar 

  • Le Bihan D, van Zijl P. From the diffusion coefficient to the diffusion tensor. NMR Biomed. 2002;15:431–4.

    Article  PubMed  Google Scholar 

  • Lee B, Vo K, Lim T. NMR Venography using susceptibility effect produced by deoxyhemoglobin. Magn Reson Med. 1992;28:25–38.

    Article  Google Scholar 

  • Leenders W, Kusters B, Pikkemaat J. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer. 2003;105:437–43.

    Article  CAS  PubMed  Google Scholar 

  • Lowther E, Whitlow C, Maldjian J. Clinical applications of ASL brain perfusion imaging, chapter 14. In: Saremi F, editor. Perfusion imaging in clinical practice. A multimodality approach to tissue perfusion analysis. New York: Wolters Klumer; 2015. p. 240–61.

    Google Scholar 

  • Lu S, Ahn D, Johnson G, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. Am J Neuroradiol. 2003;24(5):937–41.

    PubMed  Google Scholar 

  • Mansfield P. Multi-planar image-formation using NMR spin echoes. J Phys C Solid State Phys. 1977;10:55–8.

    Article  Google Scholar 

  • Mintz A., Perry J, Cairncross G. Management of single brain metastases. Practice guideline report 9-1. 2004.

    Google Scholar 

  • Mitomo M, Kawai R, Miura T, et al. Radiation necrosis of the brain and radiation-induced cerebrovasculopathy. Acta Radiol Suppl. 1986;369:227–30.

    CAS  PubMed  Google Scholar 

  • Moritani T, Hiwatashi A, Shrier D, et al. CNS vasculitis and vasculopathy: efficacy and usefulness of diffusion-weighted echoplanar MR imaging. Clin Imaging. 2004;28:261–70.

    Article  PubMed  Google Scholar 

  • Murase K. Dynamic contrast-enhanced perfusion CT: basic of mathematical tracer kinetic models and applications. Chapter 4. In: Saremi F, editor. Perfusion imaging in clinical practice. A multimodality approach to tissue perfusion analysis. New York: Wolters Klumer; 2015. p. 62–76.

    Google Scholar 

  • Nechipay EA, Dolgushin MB, Pronin IN, et al. DCE MRI in Differential Diagnosis of Primary and Secondary Brain Tumors. J Medical Imaging. 2015;4:18–30.

    Google Scholar 

  • Nemeth A, Henson J, Mullins M, et al. Improved detection of skull metastasis with diffusion weighted MR imaging. Am J Neuroradiol. 2007;28(6):1088–92.

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum E, Djalilian H, Cho K, et al. Brain metastases. Histology, multiplicity, surgery, and survival. Cancer. 1996;78(8):1781–8.

    Article  CAS  PubMed  Google Scholar 

  • Osborn AG. Diagnostic neuroradiology. St. Louis: C.V. Mosby; 1994.

    Google Scholar 

  • Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging. 2005;22(6):710–7.

    Article  PubMed  Google Scholar 

  • Pizzinni F, Smits M, Wesolowski R, et al. Arterial spin-labeled MR perfusion imaging techniques. Chapter 9. In: Saremi F, editor. Perfusion imaging in clinical practice a multimodality approach to tissue perfusion analysis. New York: Wolters Klumer; 2015. p. 149–81.

    Google Scholar 

  • Pronin IN, Kornienko VN, Fadeeva LM, et al. Diffusion-weighted images in the study of brain tumors and peritumoral edema. J Issues Neurosurgery. 2000;3:14–7.

    Google Scholar 

  • Pronin IN, Turkin AM, Dolgushin MB, et al. Tissue contrast due to magnetic susceptibility: application in neuroradiology. J Med Imaging. 2011;2:4.

    Google Scholar 

  • Pursell E, Toney H, Pound R. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69:37–83.

    Article  Google Scholar 

  • Reichenbach J. High resolution blood oxygenation level dependent MR venography (HRVG): a new technique. Neuroradiology. 2001;43:364–9.

    Article  CAS  PubMed  Google Scholar 

  • Remler M, Marcussen W, Tiller-Borsich J. The late effects of radiation on the blood brain barrier. Int J Radiat Oncol Biol Phys. 1986;12:1965–9.

    Article  CAS  PubMed  Google Scholar 

  • Rink P. Magnetic resonance in medicine. Translation by prof. E.I. Fedin. Oxford: Blackwell; 2003.

    Google Scholar 

  • Roberts T. Physiologic measurements by contrast-enhanced MR imaging: evaluate expectations and limitations. J Magn Reson Imaging. 1997;7:82–90.

    Article  CAS  PubMed  Google Scholar 

  • Rowley H, Scialfa G, Gao P, et al. Contrast-enhanced MR imaging of brain lesions: a large-scale intraindividual crossover comparison of gadobenate dimeglumine versus gadodiamide. Am J Neuroradiol. 2008;29:1684–91.

    Article  CAS  PubMed  Google Scholar 

  • Saremi F. Perfusion imaging in clinical practice. A multimodality approach to tissue perfusion analysis. New York: Wolters Klumer; 2015. p. 592.

    Google Scholar 

  • Shiroishi M, Castellazzi G, Boxerman J, et al. Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging. 2015;41:296–313.

    Article  PubMed  Google Scholar 

  • Sorensen A, Reimer P. Cerebral MR perfusion imaging: principles and current applications. New York: Thieme; 2000.

    Google Scholar 

  • Sze G, Johnson C, Kawamura Y, et al. Comparison of single- and triple-dose contrast material in the MR screening of brain metastases. Am J Neuroradiol. 1998;19:821–8.

    CAS  PubMed  Google Scholar 

  • Takahara T, Imai Y, Yamashita T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22:275–82.

    PubMed  Google Scholar 

  • Tatsuno S, Hata Y, Tada S. Double-dose Gd-DTPA: detectability of intraparenchymal brain metastasis (in Japanese). Nippon Igaku Hoshasen Gakkai Zasshi. 1996;56:855–9.

    CAS  PubMed  Google Scholar 

  • Tofts P, Brix G, Buckley D, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. Magn Reson Imaging. 1999;10(3):223–32.

    Article  CAS  Google Scholar 

  • Tofts P, Kermode A. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17:357–67.

    Article  CAS  PubMed  Google Scholar 

  • Tofts P. Quantitative MRI of the brain. Chichester: Wiley; 2004. p. 633.

    Google Scholar 

  • Tourdias T, Rodrigo S, Oppenheim C, et al. Pulsed arterial spin labeling applications in brain tumors: practical review. J Neuroradiol. 2008;35:79–89.

    Article  CAS  PubMed  Google Scholar 

  • Vogl TJ, Friebe CE, Balzer T, et al. Diagnosis of cerebral metastasis with standard dose gadobutrol vs. a high dose protocol: intraindividual evaluation of a phase II high dose study (in German). Radiologe. 1995;35:508–16.

    CAS  PubMed  Google Scholar 

  • Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. Am J Neuroradiol. 2011;32:507–14.

    Article  CAS  PubMed  Google Scholar 

  • Weidner N. Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol. 1998;184(2):119–22.

    Article  CAS  PubMed  Google Scholar 

  • Werner M, Burger P, Heinz E, et al. Intracranial atherosclerosis following radiotherapy. Neurology. 1988;38(7):1158–60.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel S, Cha S, Johnson G, et al. Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology. 2002;224:797–803.

    Article  PubMed  Google Scholar 

  • Wolf R, Detre J. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics. 2007;4:346–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Yamashima T, Yamashita J. A histological and flow cytometric study of dog brain endothelial cell injuries in delayed radiation necrosis. J Neurosurg. 1991;74:625–32.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki F, Kurisu K, Satoh K, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology. 2005;235:985–91.

    Article  PubMed  Google Scholar 

  • Yuh W, Engelken J, Muhonen M, et al. Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases. Am J Neuroradiol. 1992;13:335–45.

    CAS  PubMed  Google Scholar 

  • Zakharova NE, Kornienko VN, Potapov AA, et al. Neuroimaging of structural and hemodynamic abnormalities in brain injury. Moscow; 2013. p. 156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Dolgushin, M., Kornienko, V., Pronin, I. (2018). Magnetic Resonance Imaging (MRI). In: Brain Metastases. Springer, Cham. https://doi.org/10.1007/978-3-319-57760-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57760-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57758-6

  • Online ISBN: 978-3-319-57760-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics