Skip to main content

Targeting Nanoparticles to Brain: Impact of N-Methyl d-Aspartate Receptors

  • Chapter
  • First Online:
Drug and Gene Delivery to the Central Nervous System for Neuroprotection
  • 598 Accesses

Abstract

Neurodegenerative disorders are amongst the major debilitating conditions of our century. In brain, activation of microglia may promote neuronal injury and death through production of glutamate, pro-inflammatory factors, reactive oxygen species, quinolinic acid. It has recently been shown that nanotechnology greatly facilitated diagnosis and treatment of central nervous system diseases. Although the causes of dopaminergic neuronal damage remain unknown, to slow down or halt this process, nanotechnology based therapeutic perspectives are open to debate. In this respect, gelatin-cored nanostructured lipid carriers are excellent for targeted delivery. Attachment of superoxide dismutase and anti-glutamate N-methyl d-aspartate (NMDA) receptor 1 antibody to poly(butyl cyanoacrylate) nanoparticles increase their neuroprotective efficacy. Nanotization of nicotine, as well as nicotine-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles prevent the dopaminergic neurodegeneration and apoptosis that is mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors. Also, caffeine-encapsulated PLGA nanoparticles exhibit higher protective effect on dopaminergic neurons. Regarding these findings, in our studies, we observed that NMDA receptors over-activation is linked to neurodegeneration. Thus, targeting nanostructured materials to NMDA receptors for biomedical and pharmaceutical applications may be considered as treatment options in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson N, Davis T, Bosanquet N. The epidemic of Alzheimer’s disease. How can we manage the costs? Pharmacoeconomics. 2000;18(3):215–23.

    Article  CAS  PubMed  Google Scholar 

  2. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vattanarongkup J, Piyachaturawat P, Tuchinda P, Sanvarinda P, Sanvarinda Y, Jantaratnotai N.Protective effects of a diarylheptanoid from curcuma comosa against hydrogen peroxide-induced astroglial cell death. Planta Med. 2016;82:1456.

    Article  CAS  PubMed  Google Scholar 

  4. Nagai J, Baba R, Ohshima T. CRMPs function in neurons and glial cells: potential therapeutic targets for neurodegenerative diseases and CNS injury. Mol Neurobiol. 2016; doi: 10.1007/s12035-016-0005-1

  5. Reuillon T, Ward SE, Beswick P. AMPA receptor positive allosteric modulators: potential for the treatment of neuropsychiatric and neurological disorders. Curr Top Med Chem. 2016;16:3536.

    Article  CAS  PubMed  Google Scholar 

  6. Tiwari MN, Agarwal S, Bhatnagar P, Singhal NK, Tiwari SK, Kumar P, et al. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism. Free Radic Biol Med. 2013;65:704–18.

    Article  CAS  PubMed  Google Scholar 

  7. Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci. 2007;32(8–9):1054–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Piaceri I, Nacmias B, Sorbi S. Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed). 2013;5:167–77.

    Article  Google Scholar 

  9. Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? J Neurochem. 2012;120(Suppl 1):167–85.

    Article  CAS  PubMed  Google Scholar 

  10. Wirdefeldt K, Adami H-O, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(Suppl 1):S1–58.

    Article  PubMed  Google Scholar 

  11. Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 1992;119(6):598–620.

    CAS  PubMed  Google Scholar 

  12. Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med. 2001;7(12):548–54.

    Article  CAS  PubMed  Google Scholar 

  13. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci. 1997;17(8):2653–7.

    CAS  PubMed  Google Scholar 

  14. Cras P, Kawai M, Siedlak S, Mulvihill P, Gambetti P, Lowery D, et al. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer’s disease. Am J Pathol. 1990;137(2):241–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A. 1997;94(18):9866–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engin AB. Investigation of the effect of C1Q and complement regulatory protein CD59 on the SH-SY5Y cell viability in hyperglycemic conditions [Ph.D. Thesis]. Gazi University, Institute of Health Sciences; 2015.

    Google Scholar 

  17. Stone TW, Addae JI. The pharmacological manipulation of glutamate receptors and neuroprotection. Eur J Pharmacol. 2002;447(2–3):285–96.

    Article  CAS  PubMed  Google Scholar 

  18. Lass A, Agarwal S, Sohal RS. Mitochondrial ubiquinone homologues, superoxide radical generation, and longevity in different mammalian species. J Biol Chem. 1997;272(31):19199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci. 2007;257(1–2):221–39.

    Article  CAS  PubMed  Google Scholar 

  20. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al. Neuroinflammation, oxidative stress and the pathogenesis of parkinson’s disease. Clin Neurosci Res. 2006;6(5):261–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, et al. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm (Vienna). 2008;115(7):1001–9.

    Article  CAS  Google Scholar 

  22. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151–70.

    Article  CAS  PubMed  Google Scholar 

  23. Greenamyre JT, MacKenzie G, Peng TI, Stephans SE. Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp. 1999;66:85–97.

    Article  CAS  PubMed  Google Scholar 

  24. Liu B, Hong J-S. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Rock RB, Peterson PK. Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. J Neuroimmune Pharmacol. 2006;1(2):117–26.

    Article  PubMed  Google Scholar 

  26. Suárez I, Bodega G, Fernández B. Glutamine synthetase in brain: effect of ammonia. Neurochem Int. 2002;41(2–3):123–42.

    Article  PubMed  Google Scholar 

  27. Bröer S, Brookes N. Transfer of glutamine between astrocytes and neurons. J Neurochem. 2001;77(3):705–19.

    Article  PubMed  Google Scholar 

  28. Allen JW, Mutkus LA, Aschner M. Mercuric chloride, but not methylmercury, inhibits glutamine synthetase activity in primary cultures of cortical astrocytes. Brain Res. 2001;891(1–2):148–57.

    Article  CAS  PubMed  Google Scholar 

  29. Brookes N. In vitro evidence for the role of glutamate in the CNS toxicity of mercury. Toxicology. 1992;76(3):245–56.

    Article  CAS  PubMed  Google Scholar 

  30. Shults CW. Mitochondrial dysfunction and possible treatments in Parkinson’s disease--a review. Mitochondrion. 2004;4(5–6):641–8.

    Article  CAS  PubMed  Google Scholar 

  31. Engin AB, Engin ED, Karahalil B. Effect of N-acetyl cysteine, neopterin and dexamethasone on the viability of titanium dioxide nanoparticles exposed cell lines. Pteridines. 2013;23(1):111–22.

    Google Scholar 

  32. Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther. 1991;259(1):66–70.

    CAS  PubMed  Google Scholar 

  33. Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002;36(4):555–8.

    Article  CAS  PubMed  Google Scholar 

  34. Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res. 2010;27(9):1759–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133(2):177–88.

    Article  CAS  PubMed  Google Scholar 

  36. Rybicki BA, Johnson CC, Uman J, Gorell JM. Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord. 1993;8(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  37. Abbott RD, Ross GW, Tanner CM, Andersen JK, Masaki KH, Rodriguez BL, et al. Late-life hemoglobin and the incidence of Parkinson’s disease. Neurobiol Aging. 2012;33(5):914–20.

    Article  CAS  PubMed  Google Scholar 

  38. Miyake Y, Tanaka K, Fukushima W, Sasaki S, Kiyohara C, Tsuboi Y, et al. Dietary intake of metals and risk of Parkinson’s disease: a case-control study in Japan. J Neurol Sci. 2011;306(1–2):98–102.

    Article  CAS  PubMed  Google Scholar 

  39. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18(2):321–36.

    Article  CAS  PubMed  Google Scholar 

  40. Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem. 2011;118(6):939–57.

    Article  PubMed  CAS  Google Scholar 

  41. Liu G, Men P, Perry G, Smith MA. Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol. 2010;610:123–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu G, Men P, Perry G, Smith MA. Chapter 5 - Development of iron chelator-nanoparticle conjugates as potential therapeutic agents for Alzheimer disease. Prog Brain Res. 2009;180:97–108.

    Article  CAS  PubMed  Google Scholar 

  43. Liu G, Men P, Harris PLR, Rolston RK, Perry G, Smith MA. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406(3):189–93.

    Article  CAS  PubMed  Google Scholar 

  44. Bonda DJ, Liu G, Men P, Perry G, Smith MA, Zhu X. Nanoparticle delivery of transition-metal chelators to the brain: oxidative stress will never see it coming! CNS Neurol Disord Drug Targets. 2012;11(1):81–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu G, Garrett MR, Men P, Zhu X, Perry G, Smith MA. Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochim Biophys Acta. 2005;1741(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  46. Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D, et al. The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm (Vienna). 2002;109(5–6):663–72.

    Article  CAS  Google Scholar 

  47. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–73.

    Article  CAS  PubMed  Google Scholar 

  48. Sun B, Liu R, Ye N, Xiao Z-D. Comprehensive evaluation of microRNA expression profiling reveals the neural signaling specific cytotoxicity of superparamagnetic iron oxide nanoparticles (SPIONs) through N-methyl-D-aspartate receptor. PLoS One. 2015;10(3):e0121671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Patel D, Kell A, Simard B, Deng J, Xiang B, Lin H-Y, et al. Cu2+−labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials. 2010;31(10):2866–73.

    Article  CAS  PubMed  Google Scholar 

  50. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article  CAS  PubMed  Google Scholar 

  51. Rammes G, Hasenjäger A, Sroka-Saidi K, Deussing JM, Parsons CG. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology. 2011;60(6):982–90.

    Article  CAS  PubMed  Google Scholar 

  52. Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(1):35–47.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang D, Fa H-B, Zhou J-T, Li S, Diao X-W, Yin W. The detection of β-amyloid plaques in an Alzheimer’s disease rat model with DDNP-SPIO. Clin Radiol. 2015;70(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  54. Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rivet CJ, Yuan Y, Borca-Tasciuc D-A, Gilbert RJ. Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chem Res Toxicol. 2012;25(1):153–61.

    Article  CAS  PubMed  Google Scholar 

  56. Pisanic TR, Blackwell JD, Shubayev VI, Fiñones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 2007;28(16):2572–81.

    Article  CAS  PubMed  Google Scholar 

  57. Chapman AG. Glutamate and epilepsy. J Nutr. 2000;130(4S Suppl):1043S–5S.

    CAS  PubMed  Google Scholar 

  58. Banerjee J, Banerjee Dixit A, Tripathi M, Sarkar C, Gupta YK, Chandra PS. Enhanced endogenous activation of NMDA receptors in pyramidal neurons of hippocampal tissues from patients with mesial temporal lobe epilepsy: a mechanism of hyper excitation. Epilepsy Res. 2015;117:11–6.

    Article  CAS  PubMed  Google Scholar 

  59. Fu T, Kong Q, Sheng H, Gao L. Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast. 2016;2016:2412958.

    PubMed  PubMed Central  Google Scholar 

  60. Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J. 2009;23(5):1384–95.

    Article  CAS  PubMed  Google Scholar 

  61. Yun X, Maximov VD, Yu J, Zhu H, Vertegel AA, Kindy MS. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab. 2013;33(4):583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chan PH, Longar S, Fishman RA. Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema. Ann Neurol. 1987;21(6):540–7.

    Article  CAS  PubMed  Google Scholar 

  63. Imaizumi S, Woolworth V, Fishman RA, Chan PH. Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke J Cereb Circ. 1990;21(9):1312–7.

    Article  CAS  Google Scholar 

  64. Reukov V, Maximov V, Vertegel A. Proteins conjugated to poly(butyl cyanoacrylate) nanoparticles as potential neuroprotective agents. Biotechnol Bioeng. 2011;108(2):243–52.

    Article  CAS  PubMed  Google Scholar 

  65. Fiebich BL, Schleicher S, Butcher RD, Craig A, Lieb K. The neuropeptide substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression independently from NF-kappa B. J Immunol. 2000;165(10):5606–11.

    Article  CAS  PubMed  Google Scholar 

  66. Marriott I. The role of tachykinins in central nervous system inflammatory responses. Front Biosci. 2004;9:2153–65.

    Article  CAS  PubMed  Google Scholar 

  67. Reid MS, Herrera-Marschitz M, Hökfelt T, Lindefors N, Persson H, Ungerstedt U. Striatonigral GABA, dynorphin, substance P and neurokinin A modulation of nigrostriatal dopamine release: evidence for direct regulatory mechanisms. Exp Brain Res. 1990;82(2):293–303.

    Article  CAS  PubMed  Google Scholar 

  68. Reynolds A, Laurie C, Mosley RL, Gendelman HE. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol. 2007;82:297–325.

    Article  CAS  PubMed  Google Scholar 

  69. Wang Q, Chu C-H, Qian L, Chen S-H, Wilson B, Oyarzabal E, et al. Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase. J Neurosci. 2014;34(37):12490–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Thornton E, Tran TTB, Vink R. A substance P mediated pathway contributes to 6-hydroxydopamine induced cell death. Neurosci Lett. 2010;481(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  71. Taquet H, Nomoto M, Rose S, Jenner P, Javoy-Agid F, Mauborgne A, et al. Levels of Met-enkephalin, Leu-enkephalin, substance P and cholecystokinin in the brain of the common marmoset following long term 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine treatment. Neuropeptides. 1988;12(3):105–10.

    Article  CAS  PubMed  Google Scholar 

  72. Thornton E, Vink R. Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson’s disease. PLoS One. 2012;7(4):e34138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen W, Zhang G, Marvizón JCG. NMDA receptors in primary afferents require phosphorylation by Src family kinases to induce substance P release in the rat spinal cord. Neuroscience. 2010;166(3):924–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamakura T, Shimoji K. Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol. 1999;59(3):279–98.

    Article  CAS  PubMed  Google Scholar 

  75. Tong C-K, MacDermott AB. Synaptic GluN2A and GluN2B containing NMDA receptors within the superficial dorsal horn activated following primary afferent stimulation. J Neurosci. 2014;34(33):10808–20.

    Article  PubMed  CAS  Google Scholar 

  76. Chambers JW, Howard S, LoGrasso PV. Blocking c-Jun N-terminal kinase (JNK) translocation to the mitochondria prevents 6-hydroxydopamine-induced toxicity in vitro and in vivo. J Biol Chem. 2013;288(2):1079–87.

    Article  CAS  PubMed  Google Scholar 

  77. Lee E, Park HR, Ji ST, Lee Y, Lee J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J Neurosci Res. 2014;92(1):130–9.

    Article  CAS  PubMed  Google Scholar 

  78. Giuliani P, Romano S, Ballerini P, Ciccarelli R, Petragnani N, Cicchitti S, et al. Protective activity of guanosine in an in vitro model of Parkinson’s disease. Panminerva Med. 2012;54(1 Suppl 4):43–51.

    CAS  PubMed  Google Scholar 

  79. Zhao Y-Z, Jin R-R, Yang W, Xiang Q, Yu W-Z, Lin Q, et al. Using gelatin nanoparticle mediated intranasal delivery of neuropeptide substance P to enhance neuro-recovery in hemiparkinsonian rats. PLoS One. 2016;11(2):e0148848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vandelli MA, Rivasi F, Guerra P, Forni F, Arletti R. Gelatin microspheres crosslinked with D,L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int J Pharm. 2001;215(1–2):175–84.

    Article  CAS  PubMed  Google Scholar 

  81. Sivera M, Kvitek L, Soukupova J, Panacek A, Prucek R, Vecerova R, et al. Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity. PLoS One. 2014;9(8):e103675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release. 2013;172(3):1075–91.

    Article  CAS  PubMed  Google Scholar 

  83. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  CAS  PubMed  Google Scholar 

  84. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–57.

    Article  CAS  PubMed  Google Scholar 

  85. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24.

    Article  CAS  PubMed  Google Scholar 

  86. Vyas TK, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting. Curr Drug Deliv. 2005;2(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  87. Khan SA, Schneider M. Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading. Macromol Biosci. 2013;13(4):455–63.

    Article  CAS  PubMed  Google Scholar 

  88. Eisenhardt M, Leixner S, Luján R, Spanagel R, Bilbao A. Glutamate receptors within the mesolimbic dopamine system mediate alcohol relapse behavior. J Neurosci. 2015;35(47):15523–38.

    Article  CAS  PubMed  Google Scholar 

  89. Lee FJS, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell. 2002;111(2):219–30.

    Article  CAS  PubMed  Google Scholar 

  90. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem. 2003;278(22):20196–202.

    Article  CAS  PubMed  Google Scholar 

  91. Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000;23:185–215.

    Article  CAS  PubMed  Google Scholar 

  92. Dunah AW, Standaert DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci. 2001;21(15):5546–58.

    CAS  PubMed  Google Scholar 

  93. Picconi B, Gardoni F, Centonze D, Mauceri D, Cenci MA, Bernardi G, et al. Abnormal Ca2+−calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J Neurosci. 2004;24(23):5283–91.

    Article  CAS  PubMed  Google Scholar 

  94. Fiorentini C, Rizzetti MC, Busi C, Bontempi S, Collo G, Spano P, et al. Loss of synaptic D1 dopamine/N-methyl-D-aspartate glutamate receptor complexes in L-DOPA-induced dyskinesia in the rat. Mol Pharmacol. 2006;69(3):805–12.

    CAS  PubMed  Google Scholar 

  95. Moraga-Amaro R, González H, Ugalde V, Donoso-Ramos JP, Quintana-Donoso D, Lara M, et al. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology. 2016;103:222–35.

    Article  CAS  PubMed  Google Scholar 

  96. Cepeda C, Levine MS. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci. 1998;20(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  97. Gardoni F, Bellone C. Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases. Front Cell Neurosci. 2015;9:25.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang X, Chergui K. Dopamine depletion of the striatum causes a cell-type specific reorganization of GluN2B- and GluN2D-containing NMDA receptors. Neuropharmacology. 2015;92:108–15.

    Article  CAS  PubMed  Google Scholar 

  99. Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LKS, et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano. 2015;9(5):4850–71.

    Article  CAS  PubMed  Google Scholar 

  100. Lugon MDMV, Batsikadze G, Fresnoza S, Grundey J, Kuo M-F, Paulus W, et al. Mechanisms of nicotinic modulation of glutamatergic neuroplasticity in humans. Cereb Cortex. 2017;21:544.

    Google Scholar 

  101. Tang B, Luo D, Yang J, Xu X-Y, Zhu B-L, Wang X-F, et al. Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex. Sci Rep. 2015;5:14099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aramakis VB, Metherate R. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci. 1998;18(20):8485–95.

    CAS  PubMed  Google Scholar 

  103. Marchi M, Grilli M, Pittaluga AM. Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals. Front Pharmacol. 2015;6:89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Nakajima A, Kinugasa Y, Torii J, Hishinuma T, Tomioka Y, Yamada K, et al. Repeated treatment with nicotine induces phosphorylation of NMDA receptor NR2B subunit in the brain regions involved in behavioral sensitization. Neurosci Lett. 2012;524(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  105. Gao M, Jin Y, Yang K, Zhang D, Lukas RJ, Wu J. Mechanisms involved in systemic nicotine-induced glutamatergic synaptic plasticity on dopamine neurons in the ventral tegmental area. J Neurosci. 2010;30(41):13814–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zielińska E, Kuc D, Zgrajka W, Turski WA, Dekundy A. Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain--in vitro and ex vivo evidence. Toxicol Appl Pharmacol. 2009;240(2):174–9.

    Article  PubMed  CAS  Google Scholar 

  107. Rodvelt KR, Schachtman TR, Kracke GR, Miller DK. NMDA receptor blockade augmented nicotine-evoked dopamine release from rat prefrontal cortex slices. Neurosci Lett. 2008;440(3):319–22.

    Article  CAS  PubMed  Google Scholar 

  108. Duan J-J, Lozada AF, Gou C-Y, Xu J, Chen Y, Berg DK. Nicotine recruits glutamate receptors to postsynaptic sites. Mol Cell Neurosci. 2015;68:340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–72.

    Article  CAS  PubMed  Google Scholar 

  110. Baura GD, Foster DM, Porte D, Kahn SE, Bergman RN, Cobelli C, et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92(4):1824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wallum BJ, Taborsky GJ, Porte D, Figlewicz DP, Jacobson L, Beard JC, et al. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab. 1987;64(1):190–4.

    Article  CAS  PubMed  Google Scholar 

  112. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49(9):1525–33.

    Article  CAS  PubMed  Google Scholar 

  113. Schuh AF, Rieder CM, Rizzi L, Chaves M, Roriz-Cruz M. Mechanisms of brain aging regulation by insulin: implications for neurodegeneration in late-onset Alzheimer’s disease. ISRN Neurol. 2011;2011:306905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis. 2005;7(1):63–80.

    Article  CAS  PubMed  Google Scholar 

  115. Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, et al. Insulin increases CSF Abeta42 levels in normal older adults. Neurology. 2003;60(12):1899–903.

    Article  CAS  PubMed  Google Scholar 

  116. Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998;50(1):164–8.

    Article  CAS  PubMed  Google Scholar 

  117. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging. 2006;27(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  118. Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci. 2004;24(49):11120–6.

    Article  CAS  PubMed  Google Scholar 

  119. Noh KM, Lee JC, Ahn YH, Hong SH, Koh JY. Insulin-induced oxidative neuronal injury in cortical culture: mediation by induced N-methyl-D-aspartate receptors. IUBMB Life. 1999;48(3):263–9.

    Article  CAS  PubMed  Google Scholar 

  120. Meeker KD, Meabon JS, Cook DG. Partial loss of the glutamate transporter GLT-1 alters brain Akt and insulin signaling in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015;45(2):509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008;70(6):440–8.

    Article  CAS  PubMed  Google Scholar 

  122. Pang Y, Lin S, Wright C, Shen J, Carter K, Bhatt A, et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience. 2016;318:157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zheng C, Guo Q, Wu Z, Sun L, Zhang Z, Li C, et al. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. Eur J Pharm Sci. 2013;49(4):474–82.

    Article  CAS  PubMed  Google Scholar 

  124. Guo Q, Wu Z, Zhang X, Sun L, Li C. Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH. Soft Matter. 2014;10(6):911–20.

    Article  CAS  PubMed  Google Scholar 

  125. Ali J, Ali M, Baboota S, Sahani JK, Ramassamy C, Dao L, et al. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010;16(14):1644–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Basak Engin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Engin, A.B. (2017). Targeting Nanoparticles to Brain: Impact of N-Methyl d-Aspartate Receptors. In: Sharma, H., Muresanu, D., Sharma, A. (eds) Drug and Gene Delivery to the Central Nervous System for Neuroprotection. Springer, Cham. https://doi.org/10.1007/978-3-319-57696-1_7

Download citation

Publish with us

Policies and ethics