Skip to main content

Glyco-Functionalysed Biomaterials in Neuroregeneration

  • Chapter
  • First Online:
Drug and Gene Delivery to the Central Nervous System for Neuroprotection

Abstract

The key signalling roles played by glycans (simple or complex) in the development of smart biomaterials for neuroregeneration is reported. The glycans involved and their diversity (glycomic), the nature and properties of biomaterials, the bioconjugation methods, and the effects in neuroregeneration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern R, Jedrzejas M. Carbohydrate polymers at the center of life’s origins: the importance of molecular processivity. Chem Rev. 2008;108:5061–85.

    Article  CAS  PubMed  Google Scholar 

  2. Lauc G, Krištić J, Zoldoš V. Glycans – the third revolution in evolution. Front Genet. 2014;5:1–7.

    Article  CAS  Google Scholar 

  3. Varki A. Evolutionary forces shaping the golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol. 2011;3:A005462.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Freeze HH, Eklund EA, Ng B, Patterson MC. Neurological aspects of human glycosylation disorders. Ann Rev Neurosci. 2015;38:105–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soleman S, Filippov MA, Dityatev A, And Fawcett JW. Targeting the neural extracellular matrix in neurological disorders. Neuroscience. 2013;253:194–213.

    Article  CAS  PubMed  Google Scholar 

  6. Kanekiyo K, Inamori KI, Kitazume S, Sato K, Maeda J, Higuchi M, Kizuka Y, Korekane H, Matsuo I, Honke K, And Taniguchi N. Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J Neurosci. 2013;33:10037–47.

    Article  CAS  PubMed  Google Scholar 

  7. Scott A, Yuzwa A, And Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer’s disease and beyond. Chem Soc Rev. 2014;43:6839–58.

    Article  Google Scholar 

  8. Kleene R, And Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci. 2004;5:195–208.

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz NB; Domowicz MS. Chemistry and function of glycosaminoglycans in the nervous system. In RK Yu and C-L Schengrund (ed) Glycobiology of the nervous system. Advances in neurobiology, vol. 9. Springer Science+Business Media, New York, pp. 89-115, 2014.

    Google Scholar 

  10. Murrey HE, And Hsieh-Wilson LC. The chemical neurobiology of carbohydrates. Chem Rev. 2008;108:1708–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dani N, Broadie K. Glycosylated synaptomatrix regulation of trans-synaptic signalling. Dev Neurobiol. 2012;72:2–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev. 2002;102:439–69.

    Article  CAS  PubMed  Google Scholar 

  13. Crocker P, Paulson J, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66.

    Article  CAS  PubMed  Google Scholar 

  14. Schachner M, Bartsch U. Multiple functions of the myelin-associated glycoprotein mag (siglec-4a) in formation and maintenance of myelin. Glia. 2000;29:154–65.

    Article  CAS  PubMed  Google Scholar 

  15. Rutishauser U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci. 2008;9:26–35.

    Article  CAS  PubMed  Google Scholar 

  16. Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M, Matsas R. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain. 2007;130:2159–74.

    Article  PubMed  Google Scholar 

  17. Zhang Y, Zhang X, Yeh J, Richardson P, Bo X. Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/Gap-43 double transgenic mice. Eur J Neurosci. 2007;25:351–61.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Li L, Irvine KD, Baker NE. Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development. 2003;130:2829–40.

    Article  CAS  PubMed  Google Scholar 

  19. Sasamura T, Sasaki N, Miyashita F, Nakao S, Ishikawa HO, Ito M, Kitagawa M, Harigaya K, Spana E, Bilder D, Perrimon N, Matsuno K. Neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development. 2003;130:4785–95.

    Article  CAS  PubMed  Google Scholar 

  20. Bullock S, Potter J, Rose SPR. Grafts of Schwann cells. J Neurochem. 1990;54:135–42.

    Article  CAS  PubMed  Google Scholar 

  21. Matthies H, Staak S, Krug M. Fucose and fucosyllactose enhance in-vitro hippocampal long-term potentiation. Brain Res. 1996;725:276–80.

    Article  CAS  PubMed  Google Scholar 

  22. Esko JD, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2009. Chapter 16.

    Google Scholar 

  23. Hascall V, Esko JD. Hyaluronan. In: Varki A, Cummings RD, Esko JDFreeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. Cold Spring Harbor New York: Cold Spring Harbor Laboratory Press; 2009. Chapter 15.

    Google Scholar 

  24. Meneghetti MCZ, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. Heparan sulfate and heparin interactions with proteins. J R Soc Interface. 2015;12:20150589.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mager MD, Lapointe V, Stevens MM. Exploring and exploiting chemistry at the cell surface. Nat Chem. 2011;3:582–9.

    Article  CAS  PubMed  Google Scholar 

  26. Linhardt RJ, Toida T. Heparin oligosaccharides: new analogues development and applications. Carbohydr Drug Design. 1997;7:277–341.

    Google Scholar 

  27. Russo L, Cipolla L. Glycomics: new challenges and opportunities in regenerative medicine. Chem Eur J. 2016. doi:10.1002/chem.201602156.

    Google Scholar 

  28. Abo NEA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen — Emerging collagen based therapies hit the patient. Adv Drug Deliv Rev. 2013;65:429–56.

    Article  Google Scholar 

  29. Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc Interface. 2014;11:20140817.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Griffith LG. Polymeric biomaterials. Acta Mater. 2000;48:263–77.

    Article  CAS  Google Scholar 

  31. Amass WA, Tighe B. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers, and recent advances in biodegradation studies. Polym Int. 1998;47:89–144.

    Article  CAS  Google Scholar 

  32. Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials. 1994;15:1209–13.

    Article  CAS  PubMed  Google Scholar 

  33. Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32:698–725.

    Article  CAS  Google Scholar 

  34. Lee W, Parpura V. Carbon nanotubes as substrates/scaffolds for neural cell growth. Prog Brain Res. 2009;180:110–25.

    Article  PubMed  Google Scholar 

  35. Bosi S, Fabbro A, Ballerini L, Prato M. Carbon nanotubes: a promise for nerve tissue engineering? Nanotechnol Rev. 2013;2:47–57.

    Article  CAS  Google Scholar 

  36. Kyle S, Aggeli A, Inghamand E, McPherson MJ. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol. 2009;27:423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Q, Chau Y. Neural differentiation directed by selfassembling peptide scaffolds presenting laminin-derived epitopes. J Biomed Mater Res. 2010;94A:688–99.

    CAS  Google Scholar 

  38. Doran MR, Markway BD, Aird IA, Rowlands AS, George PA, Nielsen LK, Cooper-White JJ. Surface bound stem cell factor and the promotion of hematopoietic cell expansion. Biomaterials. 2009;30:4047–52.

    Article  CAS  PubMed  Google Scholar 

  39. Ito Y. Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter. 2008;4:46–56.

    Article  CAS  Google Scholar 

  40. Hersel U, Dahmen C, And Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.

    Article  CAS  PubMed  Google Scholar 

  41. Azagarsamy MA, Anseth KS. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett. 2013;2:5–9.

    Article  CAS  PubMed  Google Scholar 

  42. Park S, Gildersleeve JC, Blixt O, Shin I. Carbohydrate microarrays. Chem Soc Rev. 2013;42:4310–26.

    Article  CAS  PubMed  Google Scholar 

  43. Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci. 2009;10:682–92.

    Article  CAS  PubMed  Google Scholar 

  44. Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci. 2006;7:65–74.

    Article  CAS  PubMed  Google Scholar 

  45. Wang TY, Forsythe JS, Parish CL, Nisbet DR. Biofunctionalisation of polymeric scaffolds for neural tissue engineering. J Biomater Appl. 2012;27:369–90.

    Article  PubMed  Google Scholar 

  46. Tresco PA, Seil FJ. Tissue engineering strategies for nervous system repair. Prog Brain Res. 2000;128:349–63.

    Article  CAS  PubMed  Google Scholar 

  47. Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacol Rev. 2014;39:169–88.

    Article  CAS  Google Scholar 

  48. Li GN, Hoffman-Kim D. Tissue-engineered platforms of axon guidance. Tissue Eng. 2008;14:33–51.

    Article  CAS  Google Scholar 

  49. Yu LMY, Miller FD, Shoichet MS. The use of immobilized neurotrophins to support neuron survival and guide nerve fiber growth in compartmentalized chambers. Biomaterials. 2010;31:6987–99.

    Article  CAS  PubMed  Google Scholar 

  50. Horne MK, Nisbet DR, Forsythe JS. Threedimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev. 2010;19:843–52.

    Article  CAS  PubMed  Google Scholar 

  51. Reichardt LF, Tomaselli KJ. Extracellular matrix molecules and their receptors: functions in neural development. Annu Rev Neurosci. 1991;14:531–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Letourneau PC, Condic ML, Snow DM. Interactions of developing neurons with the extracellular matrix. J Neurosci. 1994;14:915–28.

    CAS  PubMed  Google Scholar 

  53. Ito Y, Chen G, Imanishi Y, Morooka T, Nishida E, Okabayashi Y, Kasuga M. Differential control of cellular gene expression by diffusible and non-diffusible EGF. J Biochem. 2001;129:733–7.

    Article  CAS  PubMed  Google Scholar 

  54. Bullock S, Potter J, Rose SPR. Effects of the amnesic agent 2-deoxygalactose on incorporation of fucose into chick brain glycoproteins. J Neurochem. 1990;54:135–42.

    Article  CAS  PubMed  Google Scholar 

  55. Kalovidouris SA, Gama CI, Lee LW, Hsieh-Wilson LC. A role for fucose α(1-2) galactose carbohydrates in neuronal growth. J Am Chem Soc. 2005;127:1340–1.

    Article  CAS  PubMed  Google Scholar 

  56. Russo L, Sgambato A, Lecchi M, Pastori V, Raspanti M, Natalello A, Doglia SM, Nicotra F, Cipolla L. Neoglucosylated collagen matrices drive neuronal cells to differentiate. ACS Chem Neurosci. 2014;5:261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller T, Goude MC, Mcdevitt TC, Temenoff JS. Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery. Acta Biomater. 2014;10:1705–19.

    Article  CAS  PubMed  Google Scholar 

  58. Weyers A, Linhardt RJ. Neoproteoglycans in tissue engineering. FEBS J. 2013;280:2511–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferdous Z, Grande-Allen K. Utility and control of proteoglycans in tissue engineering. Tissue Eng. 2007;13:1893–904.

    Article  CAS  PubMed  Google Scholar 

  60. Lee SG, Brown JM, Rogers CJ, Matson JB, Krishnamurthy C, Rawat M, Hsieh-Wilson LC. End-functionalized glycopolymers as mimetics of chondroitin sulfate proteoglycans. Chem Sci. 2011;1:322–5.

    Article  Google Scholar 

  61. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, And Olson L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995;373:335–9.

    Article  CAS  PubMed  Google Scholar 

  62. Pulsipher A, Griffin ME, Stone SE, Brown JM, Hsieh-Wilson LC. Directing neuronal signalling through cell-surface glycan engineering. J Am Chem Soc. 2014;136:6794–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA, Nishi A, Hsieh-Wilson LC. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Chem Biol. 2006;2:467–73.

    CAS  Google Scholar 

  64. Beurdeley M, Spatazza J, Lee HHC, Sugiyama S, Bernard C, Di Nardo AA, Hensch TK, Prochiantz AJ. Directing neuronal signalling through cell-surface glycan engineering. Neuroscience. 2012;136:6794–7.

    Google Scholar 

  65. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M. Crystal structure of a ternary fgf-fgfr-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000;6:743–50.

    Article  CAS  PubMed  Google Scholar 

  66. Raspanti M, Caravà E, Sgambato A, Natalello A, Russo L, Cipolla L. The collagrecan: synthesis and visualization of an artificial proteoglycan. Int J Biol Macromol. 2016;86:65–70.

    Article  CAS  PubMed  Google Scholar 

  67. Russo L, Gautieri A, Raspanti M, Taraballi F, Nicotra F, Vesentini S, Cipolla L. Carbohydrate-functionalized collagen matrices: design and characterization of a novel neoglycosylated biomaterial. Carbohydr Res. 2014;389:12–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Nicotra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Russo, L., Sgambato, A., Guizzardi, R., Vesentini, S., Cipolla, L., Nicotra, F. (2017). Glyco-Functionalysed Biomaterials in Neuroregeneration. In: Sharma, H., Muresanu, D., Sharma, A. (eds) Drug and Gene Delivery to the Central Nervous System for Neuroprotection. Springer, Cham. https://doi.org/10.1007/978-3-319-57696-1_6

Download citation

Publish with us

Policies and ethics